Теперь силовская 2-подгруппа
Доказательство следствия теоремы. Пусть утверждение неверно и группа
Итак, в данной курсовой работе приводятся свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, а вторая 2-разложимая, произведением бипримарной и 2-разложимой групп. Доказываются следующие теоремы:
Теорема.Пусть и
--- подгруппы конечной группы
и пусть
. Если подгруппы
и
-разложимы для каждого
, то
разрешима.
Теорема.Пусть и
--- подгруппы конечной группы
и пусть
. Предположим, что
и
---
-замкнуты для каждого
. Если
и
-разложимы и
-разложимы, то
разрешима.
Теорема.Пусть есть группа Шмидта,
--- 2-разложимая группа, порядки
и
взаимно просты. Если
и
--- конечная неразрешимая группа, то
,
,
и
--- простое число
или
для некоторого простого
.
Теорема.Пусть --- группа Шмидта;
---
-разложимая группа, где
. Если
и
--- простая группа, то
,
или
и
--- простое число.
Теорема.Пусть конечная группа является произведением своих подгрупп
и
взаимно простых порядков, и пусть
--- бипримарная группа, а
--- 2-разложимая группа четного порядка. Предположим, что в
есть неединичная циклическая силовская подгруппа
. Тогда, если
неразрешима, то
изоморфна
или
.
Теорема.Пусть неразрешимая группа является произведением бипримарной подгруппы
и примарной подгруппы
. Тогда, если среди силовских подгрупп группы
есть циклическая, то
изоморфна одной из следующих групп:
1)
2)
3)
4)
5)
6)
7)