Лемма Если конечная группа не является -свободной, то существуют -подгруппы и такие, что нормальна в и .
Доказательство. По условию в группе
существует секция , изоморфная . Пусть --- нормальная в подгруппа индекса , содержащая подгруппу с индексом . По лемме Фраттини , где --- силовская -подгруппа из , Так как имеет индекс в силовской -подгруппе из , то разрешима и содержит -холловскую подгруппу . Кроме того, и .Лемма Конечная группа, содержащая нильпотентную -холловскую подгруппу, -разрешима.
Доказательство. Достаточно показать непростоту группы
в случае, когда делит . Предположим, что простая и делит . В -свободных группах нет нильпотентных -холловских подгрупп [??], отличных от -силовской. Если не -свободна, то по лемме (??) существует ненильпотентная -подгруппа. Это противоречит теореме Виландта [??]. Лемма доказана.Через
обозначим произведение всех разрешимых нормальных в подгрупп.Лемма Пусть конечная группа и пусть разрешима, а взаимно прост с . Если в существует нилъпотентная -холловская подгруппа, то разрешима.
Доказательство. Если
--- -группа, то разрешима по лемме Сыскина(2). Пусть делит и --- минимальная нормальная в подгруппа. Если , то и разрешима по индукции, поэтому разрешима и . Пусть . Тогда и имеет порядок взаимно простой с . Значит нильпотентная -холловская подгруппа из содержится в и -разрешима по лемме(2). Из минимальности следует, что разрешима. Итак, в любом случае содержит разрешимую нормальную подгруппу . Фактор-группа удовлетворяет условиям леммы и по индукции разрешима. Поэтому разрешима и . Лемма доказана.Теорема (??) вытекает из следующей более общей теоремы
ТеоремаПусть и --- подгруппы конечной группы и пусть . Предположим, что и --- -замкнуты для каждого . Если и -разложимы и -разложимы, то разрешима.
Доказательство индукцией по порядку
. Пусть --- минимальная нормальная в подгруппа. Фактор-группа , а подгруппы и будут - и -разложимыми и -замкнутыми для каждого . По индукции разрешима, а неразрешима. Поэтому и . Следовательно, в единственная минимальная нормальная подгруппа.