МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
"Гомельский государственный университет
имени Франциска Скорины"
Математический факультет
Кафедра алгебры и геометрии
Курсовая работа
БИПРИМАРНЫЕ ГРУППЫ
Исполнитель:
студентка группы H.01.01.01 М-33
Стародубова Н.С.
Научный руководитель:
доктор физико-математических наук,
профессор кафедры Алгебры и геометрии
Монахов В. С.
Гомель 2003
Содержание
Введение
1.Основные обозначения
2. Разрешимость факторизуемой группы с разложимыми факторами
3. О произведении 2-разложимой группы и группы Шмидта
4. Произведение бипримарной и 2-разложимой групп
5. Произведение бипримарной и примарной групп
6. Доказательство теоремы (3)
Заключение
Списоклитературы
В данной курсовой работе приводятся свойства конечных групп, являющихся произведением двух групп, а именно являющихся произведением двух групп, одна из которых группа Шмидта, а вторая 2-разложимая, произведением бипримарной и 2-разложимой групп.
В третьем пункте данной курсовой работы доказываются следующие теоремы:
Теорема. Пусть
Теорема. Пусть
В четвертом пункте доказазываются приведенные ниже теоремы.
Теорема. Пусть
Теорема. Пусть
В пятом пункте доказываются следующие теоремы:
Теорема. Пусть конечная группа
Теорема. Пусть неразрешимая группа
1)
2)
3)
4)
5)
6)
7)
| группа |
| |
| |
| прямое произведение подгрупп |
| подгруппа Фраттини группы |
| фактор-группа группы |
| множество всех простых делителей натурального числа |
| множество всех простых делителей порядка группы |
| коммутант группы |
| индекс подгруппы |
2. Разрешимость факторизуемой группы с разложимыми факторами