Емпіричною функцією розподілу (функцією розподілу вибірки) називають функцію F*(x), що визначає для кожного значення х відносну частоту випадку X < х. '
Отже, по визначенню:
F(x)=nx/n
Де nx-число варіант, менших х; п — об'єм вибірки. Таким чином, для того щоб знайти, наприклад, F*(xi), потрібно число варіант, менших хг, розділити на об’єм вибірки:F*(x2) = nx2/n.
На відміну від емпіричної функції розподілу вибірки функцію розподілу F (х) генеральної сукупності називають теоретичною функцією розподілу. Різниця між емпіричної і теоретичної функціями полягає в тому, що теоретична функція F (х) визначає імовірність події X < х, а емпірична функція F* (х) визначає відносну частоту події. З теореми Бернуллі випливає, що відносна частота події X < х, тобто F* (х) прагне по імовірності до імовірності F (х) цієї події. Іншими словами, при великих п числа F* (х) і F (х) мало відрізняються одне від іншого в тому змісті, що lim n-¥Р [ | F (х)- F* (х) | < е] = 1 (е > 0). Уже звідси випливає доцільність використання емпіричної функції розподілу вибірки для наближеного представлення теоретичної (інтегральної) функції розподілу генеральної сукупності.
Такий висновок підтверджується і тим, що F*(x) наділене усіма властивостями F (х). Дійсно, з визначення функції F* (х) випливають наступні її властивості: 1) значення емпіричної функції належать відрізку [О, 1];
2) F*(x) — функція, що не спадає;
3) якщо Xi — найменша варіанта, то F*(x) = Q при x
Отже, емпірична функція розподілу вибірки служить для оцінки теоретичної функції розподілу генеральної сукупності.
Приклад.
Побудувати емпіричну функцію по даному розподілу вибірки:
варіанти xi 2 6 10
частоти ni 12 18 30
Розв’язок. Знайдемо обсяг вибірки: 12 + 18 + 30 = 60. Найменша варіанта дорівнює 2, отже,
F*(x) = О при x
Значення X < 6, а саме x1 = 2, спостерігалося 12 разів, отже,
:F*(x) = 12/60 = 0,2 при
2<x
значення x<10, а саме x1 = 2 і х2 = 6, спостерігалися 12 + 18 = 30 разів, отже,
F* (х) = 30/60 = 0,5 при 6 < х 10. Тому що x=10 — найбільша варіанта, то | F*(x)=1 при х > 10. Шукана емпірична функція
Графік цієї функції зображений на малюнку.
3.Точечні та інтервальні оцінки параметрів розподілу
3.1 Точечна оцінка параметрів розподілу
Є два підходи до оцінювання невідомих параметрів розподілів по спостереженнях: точечний і інтервальний. Точечний вказує лише точку, біля якої знаходиться оцінюваний параметр; при інтервальному знаходять інтервал, що з деякою великою ймовірністю, що задається дослідником, накриває невідоме числове значення параметра. У главі розглядаються методи точечного оцінювання параметрів; будуються інтервальні оцінки параметрів нормального розподілу, обговорюється загальний підхід до інтервального оцінювання параметрів розподілу, відмінних від нормального.
3.1.1 Метод моментів
Метод моментів є одним із методів точечного оцінювання параметрів розподілу.
Нехай закон розподілу випадкової величини X відомий із точністю до числових значень його параметрів
Допустимо, що існує k початкових моментів, кожний із який можна висловити через
Помітимо, що в системі
число рівнянь повинно бути рівним числу k оцінюваних параметрів. Знайдемо рішення системи (3.2). Висловивши кожний параметр qчерез v1,v2,…,vk, одержимо:
Властивість змістовності вибіркових початкових моментів є підставою для заміни в рівняннях (3.3) теоретичних моментів v1,v2,…,vk на обчислені при великому п вибіркові моменти v1,v2,…,vk.
Оцінками методу моментів параметрів
Питання про те, які початкові моменти включати в систему (3.2), варто вирішувати, керуючись конкретними цілями дослідження і порівняльної простоти форм залежностей моментів від параметрів. У статистичній практиці справа рідко доходить навіть до четвертих моментів.
Приклад 3.1.1 Випадковий розмір Х~ N (а, σ), при цьому числові значення параметрів а і σ2 не відомі. Знайдемо оцінки методу моментів для цих параметрів.
Використовуючи формулу (3.1), висловимо моменти v1 і v2 через а й σ2:
(v1=a)∩(v2=а2+ σ2)- такий вид системи (3.2) у даному прикладі. Вирішивши її щодо а й σ 2, одержимо: а = v1σ2 = v2 - v12. Звідси оцінки методу моментів:
це оцінка математичного чекання а;
це оцінка дисперсії σ2.
Відзначена раніше деяка невизначеність вибору початкових моментів може привести до одержання різних оцінок того самого параметра.
Приклад 3.1.2 Випадковий розмір X має розподіл Пуассона:
Знайдемо оцінку параметра X для двох
варіантів:
а) у якості початкового моменту візьмемо v1, одержимо:
б) у якості початкового моменту візьмемо v2; одержимо:
Оцінки - різні. Звичайно, краще перша: А, = х як більш проста і відповідному змісту параметра пуассонівського розподілу:
l= MX, тому за А, природно прийняти х - гарну точечну оцінку математичного чекання.
Однак не всі одержувані методом моментів оцінки мають властивості «гарної оцінки». Так, отримана в прикладі 3.1.1 оцінка
дисперсії σ2 не має властивість незміщеності а є асимптотично незміщеною оцінкою: lim