Смекни!
smekni.com

Види розподілу ймовірностей й оцінка його параметрів (стр. 2 из 8)

Емпіричною функцією розподілу (функцією розподілу вибірки) називають функцію F*(x), що визначає для кожного значення х відносну частоту випадку X < х. '

Отже, по визначенню:

F(x)=nx/n

Де nx-число варіант, менших х; п — об'єм вибірки. Таким чином, для того щоб знайти, наприклад, F*(xi), потрібно число варіант, менших хг, розділити на об’єм вибірки:F*(x2) = nx2/n.

На відміну від емпіричної функції розподілу вибірки функцію розподілу F (х) генеральної сукупності називають теоретичною функцією розподілу. Різниця між емпіричної і теоретичної функціями полягає в тому, що теоретична функція F (х) визначає імовірність події X < х, а емпірична функція F* (х) визначає відносну частоту події. З теореми Бернуллі випливає, що відносна частота події X < х, тобто F* (х) прагне по імовірності до імовірності F (х) цієї події. Іншими словами, при великих п числа F* (х) і F (х) мало відрізняються одне від іншого в тому змісті, що lim n-¥Р [ | F (х)- F* (х) | < е] = 1 (е > 0). Уже звідси випливає доцільність використання емпіричної функції розподілу вибірки для наближеного представлення теоретичної (інтегральної) функції розподілу генеральної сукупності.

Такий висновок підтверджується і тим, що F*(x) наділене усіма властивостями F (х). Дійсно, з визначення функції F* (х) випливають наступні її властивості: 1) значення емпіричної функції належать відрізку [О, 1];

2) F*(x) — функція, що не спадає;

3) якщо Xi — найменша варіанта, то F*(x) = Q при x

x1; якщо xk—найбільша варіанта, то F* (х) = 1 при x> xk.

Отже, емпірична функція розподілу вибірки служить для оцінки теоретичної функції розподілу генеральної сукупності.

Приклад.

Побудувати емпіричну функцію по даному розподілу вибірки:

варіанти xi 2 6 10

частоти ni 12 18 30

Розв’язок. Знайдемо обсяг вибірки: 12 + 18 + 30 = 60. Найменша варіанта дорівнює 2, отже,

F*(x) = О при x

2. І

Значення X < 6, а саме x1 = 2, спостерігалося 12 разів, отже,

:F*(x) = 12/60 = 0,2 при

2<x

6. I

значення x<10, а саме x1 = 2 і х2 = 6, спостерігалися 12 + 18 = 30 разів, отже,

F* (х) = 30/60 = 0,5 при 6 < х

10. Тому що x=10 — найбільша варіанта, то | F*(x)=1 при х > 10. Шукана емпірична функція

Графік цієї функції зображений на малюнку.

3.Точечні та інтервальні оцінки параметрів розподілу

3.1 Точечна оцінка параметрів розподілу

Є два підходи до оцінювання невідомих параметрів розподілів по спостереженнях: точечний і інтервальний. Точечний вказує лише точку, біля якої знаходиться оцінюваний параметр; при інтервальному знаходять інтервал, що з деякою великою ймовірністю, що задається дослідником, накриває невідоме числове значення параметра. У главі розглядаються методи точечного оцінювання параметрів; будуються інтервальні оцінки параметрів нормального розподілу, обговорюється загальний підхід до інтервального оцінювання параметрів розподілу, відмінних від нормального.

3.1.1 Метод моментів

Метод моментів є одним із методів точечного оцінювання параметрів розподілу.

Нехай закон розподілу випадкової величини X відомий із точністю до числових значень його параметрів

1,
2,…,
k
. Це означає, що відомий вид функції щільності fx(х,
), де
= (
1,
2,…,
k
), якщо X безперервна (відомий вид функції ймовірності Р (X= х,
), якщо X дискретна), але числові значення k параметрів не відомі. Знайдемо оцінку
= (
1,
2,…,
k) параметра 0, розташовуючи вибіркою: х1, х2..., хп.

Допустимо, що існує k початкових моментів, кожний із який можна висловити через

(без обмеження спільності можна розглядати тільки початкові моменти, тому що центральні моменти є функціями початкових). Нехай такими моментами будуть перший, другий,..., k-й: v1,v2,…,vk (що зовсім не обов'язково). Висловимо кожний із них через
:

(3.1)

Помітимо, що в системі

(3.2)

число рівнянь повинно бути рівним числу k оцінюваних параметрів. Знайдемо рішення системи (3.2). Висловивши кожний параметр qчерез v1,v2,…,vk, одержимо:

(3.3)

Властивість змістовності вибіркових початкових моментів є підставою для заміни в рівняннях (3.3) теоретичних моментів v1,v2,…,vk на обчислені при великому п вибіркові моменти v1,v2,…,vk.

Оцінками методу моментів параметрів

1,
2,…,
k
називаються оцінки

(3.4)

Питання про те, які початкові моменти включати в систему (3.2), варто вирішувати, керуючись конкретними цілями дослідження і порівняльної простоти форм залежностей моментів від параметрів. У статистичній практиці справа рідко доходить навіть до четвертих моментів.

Приклад 3.1.1 Випадковий розмір Х~ N (а, σ), при цьому числові значення параметрів а і σ2 не відомі. Знайдемо оцінки методу моментів для цих параметрів.

Використовуючи формулу (3.1), висловимо моменти v1 і v2 через а й σ2:

(v1=a)∩(v2=а2+ σ2)- такий вид системи (3.2) у даному прикладі. Вирішивши її щодо а й σ 2, одержимо: а = v1σ2 = v2 - v12. Звідси оцінки методу моментів:

це оцінка математичного чекання а;

це оцінка дисперсії σ2.

Відзначена раніше деяка невизначеність вибору початкових моментів може привести до одержання різних оцінок того самого параметра.

Приклад 3.1.2 Випадковий розмір X має розподіл Пуассона:

Знайдемо оцінку параметра X для двох

варіантів:

а) у якості початкового моменту візьмемо v1, одержимо:

б) у якості початкового моменту візьмемо v2; одержимо:

Оцінки - різні. Звичайно, краще перша: А, = х як більш проста і відповідному змісту параметра пуассонівського розподілу:

l= MX, тому за А, природно прийняти х - гарну точечну оцінку математичного чекання.

Однак не всі одержувані методом моментів оцінки мають властивості «гарної оцінки». Так, отримана в прикладі 3.1.1 оцінка

дисперсії σ2 не має властивість незміщеності а є асимптотично незміщеною оцінкою: lim

мd
= lim
n-1/n*
=
, тобто при великих п можна вважати, що
не зміщена щодо
.