а тому що при k = п-1 = 18 верхня довірча границя
2. Відповідно до рівняння (3.2.21),
а так як при k = п -1 = 18 50,
3.2.1 Асимптотичний підхід до інтервального оцінювання
З прикладами інтервальних оцінок, що мають місце тільки при великих об'ємах вибірок, ми вже зштовхувалися. Так, якщо розподіл випадкового розміру X відмінно від нормального, але п велике, то з імовірністю ≈ 1 - а інтервальна оцінка для MX = а має вид нерівності (3.2.3); з імовірністю ≈ 1-а інтервальна оцінка для р при великих п має вид нерівності (3.2.6) і т. д. [див. нерівності (3.2.9), (3.2.23)].
Розглянемо асимптотичний підхід у загальному випадку.
Раніше було встановлено, що при виконанні досить широких умов оцінка
Тому напряму перший підхід до довірчого інтервалу неприйнятий.
Порушимо питання так: не можна чи перетворити оцінку
Нехай θ — оцінка методу моментів: θ, а отже, і g = g(θ) є функціями вибіркових моментів. Тоді, відповідно до теореми про властивості функцій вибіркових моментів (див. 3.1), розподіл оцінки при великих п близько до нормального,
(аналогічні вираження утворюються і для оцінок максимальної правдоподібності в регулярному випадку). Але тому що дисперсія D не повинна залежати від θ, то вираження c(θ)g'(θ) повинно бути постійним, наприклад, c(θ)g'(θ) = 1. Тоді g'(θ)= 1/ c(θ) і
при цьому довільна постійна в невизначеному інтегралі вибирається з розумінь простоти остаточних виражень.
Отже, при великих п розподіл оцінки близько до нормального, при цьому
Тому при великих п для g(9) з імовірністю * I — а має місце нерівність, подібна нерівності (3.2.3):
Застосувавши до всіх частинам нерівності (3.2.26) перетворений не
Приклад 3.2.5 Побудуємо довірчий інтервал для параметра розподілення Пуассона: Р(Х = х) = л.
У прикладі 3.2.2 була знайдена оцінка методу моментів
Зіставивши вираження для
і, відповідно до рівності (3.2.25),
З урахуванням виду функції
Для функції
то, застосувавши до всіх його частинам перетворення
яке виконується при великих п з імовірністю ≈1 - α.
Приклад 3.2.6 Побудуємо довірчий інтервал для р - імовірності успіху в одиничному випробуванні.
У прикладі 3.2.4 методом максимальної правдоподібності для р була знайдена оцінка
Зіставивши вираження для D із вираженням (3.2.24), одержимо
і, відповідно до формули (3.2.25),
З обліком виду функції g(p) нерівність (3.2.26) прийме вид:
Для функції
який виконується при великих п зімовірністю ≈1 - α.
4. Розподіл Пуассона
Нехай виробляється п незалежних іспитів, у кожнім з який імовірність появи події А дорівнює р. Для визначення імовірності k появ події в цих іспитах використовують формулу Бернуллі. Якщо ж п велико, то користаються асимптотичною формулою Лапласа. Однак, ця формула непридатна, якщо імовірність події мала (р≤0,1). У цих випадках (п велико, р мало) прибігають до асимптотичною формулою Пуассона.