Числа розміщень, сполучень та перестановок зв’язані співвідношенням
Приклад 6. В партії з n елементів є k відмічених. Знайти ймовірність того, що з випадково вибраних m елементів відмічених буде x елементів (подія А).
Розв’язування. Загальна кількість наслідків дорівнює числу сполучень з n елементів по m елементів:
Наслідки, що сприяють події А, відповідають сполученням з x вибраних відмічених елементів і m-x вибраних невідмічених елементів. Відмічені елементи можна вибрати
При
(
Класичне означення ймовірностей виникло на початку розвитку теорії ймовірностей у зв’язку з вивченням шансів на виграш в азартних іграх. В той самий час класичне означення неможливо розглядати як строге означення ймовірностей. Воно використовує поняття рівноможливості, яке, по суті, означає однакову ймовірність. Виходить, що ймовірність визначається через ймовірність.
Класичне означення ймовірностей не має сенсу у випадках, коли наслідки не є рівноможливими, або коли їх нескінченна кількість.
Поняття геометричних ймовірностей – ймовірностей попадання точки в область (відрізок, частину площини і т.д.) – використовують у випадку стохастичних експериментів із нескінченною кількістю рівноможливих та несумісних наслідків.
Нехай відрізок
– кинута точка може опинитися в будь-якій точці відрізку
– ймовірність попадання точки на відрізок
За таких умов ймовірність попадання точки на відрізок
Якщо
Отже, якщо ймовірність події дорівнює нулю, то необов’язково, що ця подія неможлива.
Нехай g – плоска фігура, яка цілком знаходиться всередині іншої плоскої фігури G. На фігуру G навмання кидається точка. Це означає виконання таких допущень:
– кинута точка може опинитись у будь-якій точці фігури G;
– ймовірність попадання точки на фігуру g пропорційна площі цієї фігури і не залежить ні від її розташування відносно фігури G, ні від її форми.
За таких умов ймовірність попадання точки у фігуру g дорівнює відношенню площ фігур:
Означення (1) та (2) є частковими випадками загального означення геометричних ймовірностей:
де mes позначає міру (площу, об’єм, довжину) області,
Приклад 1. У сигналізатор поступають сигнали з двох пристроїв. Надходження сигналів від пристроїв рівноможливе у будь-який момент часу на проміжку від 0 до Т. Моменти надходження сигналів незалежні один від одного. Сигналізатор спрацьовує, якщо різниця між моментами надходження сигналів менша ніж t
Розв’язування. Нехай моменти надходження сигналів від першого й другого пристроїв відповідно x та y. За умовою задачі
Нерівностям (*) задовільняють координати будь-якої точки квадрату ОТАТ (рис. 1). Отже, цей квадрат можна розглядати як фігуру G. Його площа
Нерівність (**) виконується для точок фігури G, які знаходяться вище прямої
Статистичне означення ймовірності базується на спостереженнях за випадковою подією при послідовності експериментів.
Нехай експеримент S повторено n разів і подія A у цьому конкретному експерименті настала m разів. Відношення
називається відносною частотою випадкової події.
Відносна частота змінюється від серії до серії з n експериментів, але має властивість стійкості. Це означає, що у різних серіях із достатньої великої кількості експериментів, відносна частота змінюється мало (тим менше, чим більше виконано експериментів у серії), коливаючись біля деякого постійного числа, близьким до ймовірності події А.
Тому відносну частоту можна прийняти за наближене значення ймовірності:
Наближена рівність (2) є тим точніша, чим більше n.
Приклад 1. Відділ технічного контролю виявив 5 бракованих книг, випадково вибраних із партії, що містить 100 книг. Знайти відносну частоту появи бракованих книг.
Розв’язування. Заумовою задачі
Статистичне означення ймовірності дозволяє експериментально оцінити правомірність класичного означення ймовірностей та геометричних ймовірностей в окремому випадку.
Теорія ймовірностей стала логічно завершеним розділом математики після того, як в її основу була покладена система аксіом. Таку систему аксіом легко описати мовою теорії множин.
Можливі наслідки експерименту S утворюють множину елементарних подій