F(2n) = 2∙F(n) − 1 при n>1
Теперь посмотрим, что будет в случае, когда имеется 2n+1 людей. После первого обхода жертва с номером 1 уничтожается сразу после жертвы с номером 2n, и мы остаемся с номерами: 3, 5, 7, …, 2n−1,2n+1. Получили почти первоначальную ситуацию с nлюдьми, но на этот раз номера уцелевших удваиваются и увеличиваются на 1. Таким образом,
F(2n+1) = 2∙F(n) + 1 при n> 1
Объединение полученных равенств дает рекуррентное соотношение, которое определяет F(n) для n>3, т.к. F(1) не определено:
F(2n+1) = 2∙F(n) + 1 при n> 3
Решим данное рекуррентное соотношение. Составим таблицу первых значений F(n) и J(n) (здесь J(n) - номер последнего уцелевшего, когда из круга исключается каждый второй), и пусть n имеет вид: n=2m+k, где 2m – наибольшая степень 2, не превосходящая n (m> 0), а k – то, что остается (0 ≤ k < 2m):
n | | 2 3 | 4 5 6 7 | 8 9 10 11 12 13 14 15 | 16 17 18 |
F(n) | − | 2 1 | 3 5 1 3 | 5 7 9 11 1 3 5 7 | 9 11 13 |
J(n) | 1 | 1 3 | 1 3 5 7 | 1 3 5 7 9 11 13 15 | 1 3 5 |
Если сгруппировать значения n по степеням двойки (в таблице эти группы отделены сплошными вертикальными линиями), то в каждой группе F(n) имеются еще две группы (см. таблицу). Поэтому решение рекуррентного соотношения должно иметь вид для n> 1:
Докажем полученное соотношение методом математической индукции по числу m.
1) База: n = 2, тогда m=1, k = 0
F(21+0) = J(2) + 20= 1 + 1 = 2 (верно);
2) Индуктивный переход: пусть верно для всех чисел t≤ (m − 1). Докажем для t=m:
a) если m > 0 и 2m+k= 2n, то k – четноe и
F(2m+k)= F(2∙(2m-1+
b) если m > 0 и 2m+k=2n+1, то k – нечетно (т.е. k=2t+1) и
F(2m+k) = F(2m+(2t+1)) = F(2(2m-1+t) +1)
Из пунктов 1 и 2 следует верность доказываемого равенства.
Задача 16.Обозначим через Wn наименьшее число перекладываний, необходимых для перемещения башни из nдисков с одного колышка на другой, когда имеется не три, а четыре колышка. Покажите, что
(Здесь Tn = 2n−1 - число перекладываний в обычном случае трех колышков.)
Решение. Посмотрим на числа
Задача 17.Допустим, что в круг поставлено 2n человек, первые n из которых – «славные ребята», а n последних – «гадкие парни». Покажите, что всегда найдется целое m (зависящее от n), такое, что если, двигаясь по кругу, мы наказываем каждого m-го, то первыми будут наказаны все гадкие парни. (К примеру, при n=3 можно взять m=5, а при n=4 взять m=30.)
Заключение
В данной работе поставленные цели были достигнуты. Однако тема далеко не исчерпана. Имеются перспективы в виде обобщения или изменения условий некоторых задач, и их последующего решения. Например, задачу о «диаграммах Венна» можно обобщить, рассматривая не окружности, а овалы или выпуклые многоугольники, и для них определить, какое максимальное число возможных подмножеств с их помощью можно проиллюстрировать. Задачу Иосифа Флавия можно изменить, например, так: Иосиф занимает конкретное j-е место и может назвать роковой параметр q, после чего уничтожается каждый q-ый человек, всегда ли он сможет спастись?
В работе не рассмотрен репертуарный метод решения обобщенных рекуррентностей с определенным числом параметров (т. к. не стояло такой задачи). Репертуарным методом можно, например, решить обобщенную рекуррентность с четырьмя параметрами:
Библиографический список
1. Грехем, Р. Конкретная математика. Основание информатики. [Текст] / Р. Грехем, Д. Кнут, О. Паташник. Пер. с англ. – М.:Мир, 1998. – С. 17−37.
2. Маркушевич А. И. Возвратные последовательности. Популярные лекции по математике [Текст]. - М.: Наука, 1983.
3. Мантуров О. В. Математика в понятиях, определениях и терминах. Ч.2 [Текст] / О. В. Мантуров, Ю. К. Солнцев, Ю. И. Соркин, Н. Г. Федин; Под. ред. Л. В. Сабинина. – М.: Просвещение, 1982. – С. 207–208.