Смекни!
smekni.com

Геометрия места точек на плоскости (стр. 2 из 2)

1. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.

Через любые две точки можно провести прямую, и только одну.

2. Из трёх точек на данной прямой одна и только одна лежит между двумя другими.

3. Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин его частей, на которые он разбивается любой его точкой.

4. Прямая разбивает плоскость на две полуплоскости.

5. Каждый угол имеет определённую градусную меру, большую нуля. Развёрнутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

6. На любом луче от его начальной точки можно отложить отрезок заданной длины, и только один.

7. От любого луча в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один.

8. Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данного луча.

9. Через точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной.

3. Основные геометрические места точек на плоскости

Геометрическим местом точек плоскости, равноудалённых от сторон угла, будет биссектриса данного угла (рис. 4). АК = AT, где А – любая точка на биссектрисе.

Рис. 4.


Геометрическим местом точек, равноудалённых от двух данных точек, будет прямая, перпендикулярная к отрезку, соединяющему эти точки, и проходящая через его середину (рис. 5). MA = MB, где М – произвольная точка на серединном перпендикуляре отрезка АВ.

Рис. 5.

Геометрическим местом точек плоскости, равноудалённых от заданной точки, будет окружность с центром в этой точке (рис. 6). Точка О равноудалена от точек окружности.

Рис. 6.

Местоположение центра окружности, описанной около треугольника.

Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон (рис. 7). А, В, С – вершины треугольника, лежащие на окружности.

АМ = МВ и АК = КС.

Точки М и К – основания перпендикуляров к сторонам АВ и АС соответственно.

Рис. 7.

Местоположение центра окружности, вписанной в треугольник.

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис (рис. 8). В ⊿ABC отрезки AT и СК являются биссектрисами.

Рис. 8.

4. Примеры задач на геометрические места точек

1. Два колеса радиусов r1 и r2 катаются по прямой l. Найдите множество точек пересечения M их общих внутренних касательных.

Решение :Пусть O1 и O2 — центры колес радиусов r1 и r2 соответственно. Если M — точка пересечения внутренних касательных, то O1M: O2M = r1: r2. Из этого условия легко получить, что расстояние от точки M до прямой l равно 2r1r2/(r1 + r2). Поэтому все точки пересечения общих внутренних касательных лежат на прямой, параллельной прямой l и отстоящей от нее на расстояние 2r1r2/(r1 + r2).

2. Найдите геометрическое место центров окружностей, проходящих через две данные точки.

Решение: Пусть окружность с центром O проходит через данные точки A и B. Поскольку OA = OB (как радиусы одной окружности), точка O лежит на серединном перпендикуляре к отрезку AB. Обратно, каждая точка O, лежащая на серединном перпендикуляре к AB, равноудалена от точек A и B. Значит, точка O — центр окружности, проходящей через точки A и B.

3. Стороны AB и CD четырехугольника ABCD площади S не параллельны. Найдите ГМТ X, лежащих внутри четырехугольника, для которых SABX + SCDX = S/2.

Решение: Пусть O — точка пересечения прямых AB и CD. Отложим на лучах OA и OD отрезки OK и OL, равные AB и CD соответственно. Тогда SABX + SCDX = SKOX + SLOX±SKXL. Следовательно, площадь треугольника KXL постоянна, т. е. точка X лежит на прямой, параллельной KL.

4. На плоскости даны точки A и B. Найдите ГМТ M, для которых разность квадратов длин отрезков AM и BM постоянна.

Решение: Введем систему координат, выбрав точку A в качестве начала координат и направив ось Ox по лучу AB. Пусть точка M имеет координаты (x, y). Тогда AM2 = x2 + y2 и BM2 = (x - a)2 + y2, где a = AB. Поэтому AM2 - BM2 = 2ax - a2. Эта величина равна k для точек M с координатами ((a2 + k)/2a, y); все такие точки лежат на прямой, перпендикулярной AB.

5. Дан прямоугольник ABCD. Найдите ГМТ X, для которых AX + BX = CX + DX.

Решение: Пусть l — прямая, проходящая через середины сторон BC и AD. Предположим, что точка X не лежит на прямой l, например что точки A и X лежат по одну сторону от прямой l. Тогда AX < DX и BX < CX, а значит, AX + BX < CX + DX. Поэтому прямая l — искомое ГМТ.

6. Даны две прямые, пересекающиеся в точке O. Найдите ГМТ X, для которых сумма длин проекций отрезков OX на эти прямые постоянна.

Решение: Пусть a и b — единичные векторы, параллельные данным прямым; x равен вектору ох . Сумма длин проекций вектора x на данные прямые равна |(a,x)| + |(b,x)| = |(a±b,x)|, причем смена знака происходит на перпендикулярах, восставленных из точки O к данным прямым. Поэтому искомое ГМТ — прямоугольник, стороны которого параллельны биссектрисам углов между данными прямыми, а вершины лежат на указанных перпендикулярах.

7. Даны окружность S и точка M вне ее. Через точку M проводятся всевозможные окружности S1, пересекающие окружность S; X — точка пересечения касательной в точке M к окружности S1 с продолжением общей хорды окружностей S и S1. Найдите ГМТ X.

Решение: Пусть A и B — точки пересечения окружностей S и S1. Тогда XM2 = XA . XB = XO2 - R2, где O и R — центр и радиус окружности S. Поэтому XO2 - XM2 = R2, а значит, точки X лежат на перпендикуляре к прямой OM.

8. Даны две непересекающиеся окружности. Найдите геометрическое место точек центров окружностей, делящих пополам данные окружности (т. е. пересекающих их в диаметрально противоположных точках).

Решение: Пусть O1 и O2 — центры данных окружностей, R1 и R2 — их радиусы. Окружность радиуса r с центром X пересекает первую окружность в диаметрально противоположных точках тогда и только тогда, когда r2 = XO12 + R12, поэтому искомое ГМТ состоит из таких точек X, что XO12 + R12 = XO22 + R22, все такие точки X лежат на прямой, перпендикулярной O1O2.

9. Внутри окружности взята точка A. Найдите геометрическое место точек пересечения касательных к окружности, проведенных через концы всевозможных хорд, содержащих точку A.

Решение:Пусть O — центр окружности, R — ее радиус, M — точка пересечения касательных, проведенных через концы хорды, содержащей точку A, P — середина этой хорды. Тогда OP * OM = R2 и OP = OA cos f, где f = AOP. Поэтому AM2 = OM2 + OA2 - 2OM * OA cos f = OM2 + OA2 - 2R2, а значит, величина OM2 - AM2 = 2R2 - OA2 постоянна. Следовательно, все точки M лежат на прямой, перпендикулярной OA.

10. Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что AMD + BMC = 180o.

Решение: Пусть N — такая точка, что вектора MN= DA. Тогда NAM = DMA и NBM = BMC, поэтому четырехугольник AMBN вписанный. Диагонали вписанного четырехугольника AMBN равны, поэтому AM| BN или BM| AN. В первом случае AMD = MAN = AMB, а во втором случае BMC = MBN = BMA. Если AMB = AMD, то AMB + BMC = 180o и точка M лежит на диагонали AC, а если BMA = BMC, то точка M лежит на диагонали BD. Ясно также, что если точка M лежит на одной из диагоналей, то AMD + BMC = 180o.

11. а) Дан параллелограмм ABCD. Докажите, что величина AX2 + CX2 - BX2 - DX2 не зависит от выбора точки X.

б) Четырехугольник ABCD не является параллелограммом. Докажите, что все точки X, удовлетворяющие соотношению AX2 + CX2 = BX2 + DX2, лежат на одной прямой, перпендикулярной отрезку, соединяющему середины диагоналей.

Решение: Пусть P и Q — середины диагоналей AC и BD. Тогда AX2 + CX2 = 2PX2 + AC2/2 и BX2 + DX2 = 2QX2 + BD2/2, поэтому в задаче б) искомое ГМТ состоит из таких точек X, что PX2 - QX2 = (BD2 - AC2)/4, а в задаче a) P = Q, поэтому рассматриваемая величина равна (BD2 - AC2)/2.

Литература

1. Погорелов А.В. Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. – М.: Просвещение, 2000, с. 61.

2. Савин А.П. Метод геометрических мест /Факультативный курс по математике: Учебное пособие для 7-9 классов средней школы. Сост. И.Л. Никольская. – М.: Просвещение, 1991, с. 74.

3. Смирнова И.М., Смирнов В.А. Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2005, с. 84.

4. Шарыгин И.Ф. Геометрия. 7-9 классы: Учебник для общеобразовательных учебных заведений. – М.: Дрофа, 1997, с. 76.

5. Интернет ресурс: http://matschool2005.narod.ru/Lessons/Lesson8.htm