Смекни!
smekni.com

Графики и их функции (стр. 3 из 6)

Не ограничена снизу, ограничена сверху;

не существует, yнаиб. = y0;

Непрерывна;

6.

Выпукла вверх.

Свойства функции y = ax2:

Для случая, а>0

D(f) = (-

+
);

Убывает на луче

, возрастает на луче
;

Ограничена снизу, не ограничена сверху;

унаим. = 0, yнаиб. Не существует;

Непрерывна;

E(f) =

;

Выпукла вниз.

Для случая, а<0

D(f) = (-

+
);

Убывает на луче

возрастает на луче
;

Не ограничена снизу, ограничена сверху;

унаим. Не существует, yнаиб. = 0;

Непрерывна;

E(f) =

Выпукла вверх.

Степенная функция. Обычно степенными функциями называют функции вида

, где r - любое действительное число. Так, если r - натуральное число (r = n), то получаем функцию
.

График степенной функции y = xn в случае четного n (n = 4, 6,8, …) похож на параболу, а график степенной функции y = xn в случае нечетного n (n = 5, 7, 9, …) похож на кубическую параболу.

Если r = - n, то получаем функцию y = x - n, т.е.

.

Наконец, если r = 0, т.е. речь идет о функции y = x0, то в результате получается обыкновенная функция у = 1, где х ≠ 0; график этой функции изображен (см приложение 6).

Теперь рассмотрим функцию y = xr, где r - положительное или отрицательное дробное число. Рассмотрим в качестве примера функцию y = x2,5. Область ее определения - луч

. Построим на этом луче графики функций у = х2 (ветвь параболы) и у = х3 (ветвь кубической параболы) - эти графики изображены. Стоит заметить, что на интервале (0;

1) кубическая парабола располагается ниже, а на открытом луче (1; +∞) выше параболы. Нетрудно убедиться в том, что график функции у = х2,5 проходит через точки (0; 0) и (1;

1), как и графики функций у = х2, у = х3. При остальных значениях аргумента х график функции у = х2,5 находится между графиками функций у = х2 и у = х3 (см. приложение 7).

Почему так происходит? Посмотрим:

1). Если 0 < х < 1, то 2). Если х > 1, то

Примерно так же обстоит дело для любой степенной функции вида у = хr, где

-неправильная дробь(числитель больше знаменателя). Ее графиком является кривая (см. приложение 8), похожая на ветвь параболы. Чем больше показатель r, тем “круче” устремлена эта кривая вверх.

Свойства функции

D(f) =

;

не является ни четной, ни нечетной;

возрастает на

;

не ограничена сверху, ограничена снизу;

не имеет наибольшего значения; у наим. = 0;

непрерывна;

E(f) =

;

выпукла вниз.

Рассмотрим степенную функцию

для случая, когда
- правильная дробь
. Все рассмотренное в этой главе в отношении функции
, или, что то же самое,
имеет и отношению к любой степенной функции вида у = хr, где
- правильная дробь. График этой функции изображен (см. приложение 9)

Свойства функции

, где
:

D(f) =

;

не является ни четной, ни нечетной;

возрастает на

;

не ограничена сверху, ограничена снизу;

не имеет наибольшего значения; у наим. = 0;

непрерывна;

E(f) =

;

выпукла вверх.

Нам осталось рассмотреть степенную функцию вида

. Область ее определения - открытый луч
. Выше мы построили график степенной функции y = x - n, где n - натуральное число. При
график функции y = x - n похож на ветвь гиперболы. Точно так же дело обстоит для любой степенной функции вида
график, которой изображен. Отметим, что график данной функции имеет горизонтальную асимптоту y = 0 и вертикальную асимптоту x = 0.

Свойства функции

:

D(f) =

;

не является ни четной, ни нечетной;

возрастает на

;

не ограничена сверху, ограничена снизу;

не имеет ни наибольшего значения, ни наименьшего значения;

непрерывна;

E(f) =

;

выпукла вниз.

Функция

. Графиком функции является ветвь параболы (см. приложение 10).

Свойства функции

:

D(f) =

Возрастает;

Ограничена снизу, не ограничена сверху;

у наим. = 0, yнаиб. = Не существует;

Непрерывна;

E(f) =

;

Выпукла вверх.

7. Функция

. Графиком функции является объединение двух лучей: у = х, х≥0 и

у = - х, х≤0 (см. приложение 11).

Свойства функции

.

D(f) = (-

+
);

Убывает на луче

, возрастает на луче
;

Ограничена снизу, не ограничена сверху;

унаим. = 0, yнаиб. Не существует;

Непрерывна;

E(f) =

;

Выпукла вниз.

3.2 Тригонометрические функции

По причине того, что тригонометрические функции изучаются в школьной программе, в реферате на них уделено минимум внимания. Все основные положения указанны в таблице (см. приложение 12), а их графики приведены далее (см. приложение 13).

3.3 Кривые второго порядка

В предыдущем параграфе было установлено, что всякая прямая в прямоугольной системе координат Оху определяется уравнением первой степени относительно переменных х и у. Так же было установлено, всякое уравнение первой степени ах + bу + с = 0 в прямоугольной системе координат определяет прямую и притом единственную, если а² + b² ¹ 0. В настоящей главе мы займемся изучением линий определяемых уравнениями второй степени относительно текущих координат х и у:

ах² + 2bху + су² + 2dх + 2eу + f = 0 (1)

Такие линии называют линиями (кривыми) второго порядка. Коэффициенты уравнения (1) могут принимать различные действительные значения, исключая одновременное равенство а, b и c нулю (в противном случае уравнение (1) не будет уравнением второй степени).

Эллипс.

Эллипсом называют множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Составим уравнение эллипса с фокусами в данных точках F1 и F2. Для этого выберем прямоугольную систему координат так, чтобы ось Ох проходила через фокусы, а начало координат делило отрезок F1F2 пополам (см. приложение 14). Обозначив F1F2 = 2с, получим F1(с; 0) и F2(-с; 0). Пусть М(х; у) - произвольная точка эллипса.