Расстояние r1 = F1M и r2 = F2M называются фокальными радиусами точки М.
Положим r1 + r2 = 2а; (1)
Тогда согласно определению эллипса 2а - величина постоянная, причем 2а>2с, т.е. а>c.
По формуле расстояния между двумя точками находим
r1 =
и r2 =Подставим найденные значения r1 и r2 в равенство (1) получим уравнение эллипса
После несложных преобразований уравнение примет вид
(2)Уравнение (2) называется каноническим уравнением эллипса.
Исследование:
Координаты точки О(0; 0) не удовлетворяют уравнению (2), поэтому эллипс, определяемый этим уравнением, не проходит через начало координат.
Найдем точки пересечения эллипса с осями координат. Положив в уравнении (2) у = 0, найдем х = ± а. Следовательно, эллипс пересекает ось Ох в точках А1(а; 0) и А2(-а; 0). Аналогично получаем точки пересечения эллипса с осью Оу: В1(0; b) и B2(0; - b)
D(y) Î [-a; a]
E(y) Î [-b; b]
При возрастании ½х½ от 0 до а величина ½у½ убывает от b до 0, а при возрастании ½у½от 0 до b величина ½х½ убывает от а до 0.
Частным случаем эллипса является окружность, где а = b.
Окружность
Как известно, окружностью называют множество всех точек плоскости, одинаково удаленных от данной точки, называемой центром.
Пусть дана окружность радиусом r с центром в точке О1(a; b) (см. приложение 15); требуется составить ее уравнение.
Возьмем на данной окружности произвольную точку М (х; у)
Имеем: О1М = r, т.е.
= rОткуда (х-а) ² + (у - b) ² = r² (1)
Итак, уравнению (1) удовлетворяют координаты произвольной точки окружности. Более того, этому уравнению не удовлетворяют координаты никакой точки, не лежащей на окружности, так как если
О1М< r, то (х-а) ² + (у - b) ² < r²,
и если
О1М> r, то (х-а) ² + (у - b) ² > r².
Следовательно, (1) Есть уравнение окружности радиусом r с центром в точке О1(a; b). Если центр окружности находится на оси Ох, т.е. если b = 0, то уравнение (1) примет вид
(х-а) ² + у² = r²
Если центр окружности находится на оси Ох, т.е. если b = 0, то уравнение (1) примет вид
х² + (у - b) ² = r²
Наконец, если центр окружности находится в начале координат, т.е. если а = b = 0, то уравнение примет (1) вид
х² + у² = r²
Если в уравнении (1) раскрыть скобки, перенести все члены в левую часть и расположить их по степеням х и у, то получим
x² + y² - 2ax - 2by + a² + b² - r² = 0
Отсюда следует, что уравнение окружности является уравнением второй степени относительно переменных х и у, как бы она ни была расположена в плоскости Оху.
В этой главе были рассмотрены основные простейшие функции, кривые второго порядка и тригонометрические функции, так же представлены их графики.
Исследование функции дает возможность найти область определения и область изменения функции, области ее убывания или возрастания, асимптоты, интервал знакопостоянства и др. Однако при рассмотрении графиков многих функций часто можно избежать проведения подобного исследования, используя ряд методов, упрощающих аналитическое выражение функции и облегчающих построение графика. Изложению именно таких методов посвящается эта глава, которая может служить практическим руководством при построении многих функций.
f(x) => f(x) - b
Пусть требуется построить график функции у = f(х) - b. Нетрудно заметить, что ординаты этого графика для всех значений x на ½b½ единиц меньше соответствующих ординат графика функций у = f(х) при b>0 и на ½b½ единиц больше - при b<0. Следовательно, график функции у = y(х) - b можно получить параллельным переносом вдоль оси ординат графика функции у = f(х) на ½b½единиц вниз при b>0 или вверх при b<0. Перемещение графика связано с его перерисовыванием, что бывает затруднительно, особенно в случае сложных графиков. Перенос же графика на ½b½единиц вниз или вверх вдоль оси ординат эквивалентен соответствующему противоположному переносу оси абсцисс настолько же единиц. Именно этим способом мы будем пользоваться. Тогда представив исходную функцию в виде у + b = f(х), сформулируем следующее правило.
Для построения графика функции y + b = f(x) следует построить график функции y = f(x) и перенести ось абсцисс на ½b½ единиц вверх при b>0 или на½b½ единиц вниз при b<0. Полученный в новой системе координат график является графиком функции y = f(x) - b.
f(x) => f(x + a)
Пусть требуется построить график функции у = f(x + a). Рассмотрим функцию y = f(x), которая в некоторой точке x = x1 принимает значение у1 = f(x1). Очевидно, функция у = f(x + a) примет такое же значение в точке x2, координата которой определяется из равенства x2 + a = x1, т.е. x2 = x1 - a, причем рассматриваемое равенство справедливо для совокупности всех значений из области определения функции. Следовательно, график функции у = f(x + a) может быть получен параллельным перемещением графика функции y = f(x) вдоль оси абсцисс влево на½a½ единиц при a>0 или вправо на ½a½ единиц при a<0. Параллельное же перемещение вдоль оси абсцисс на ½a½ единиц эквивалентно переносу оси ординат на столько же единиц, но в противоположную сторону. Таким образом, получаем следующее правило.
Для построения графика функции y = f(x + a) следует построить график функции y = f(x) и перенести ось ординат на ½a½ единиц вправо при a>0 или на½a½ единиц влево при a<0. Полученный в новой системе координат график является графиком функции y = f(x + a).
f(x) => f(-x)
Очевидно, что функции y = f(-x) и y = f(x) принимают равные значения в точках, абсциссы которых равны по абсолютной величине, но противоположны по знаку. Иначе говоря, ординаты графика функции y = f(-x) в области положительных (отрицательных) значений х будут равны ординатам графика функции y = f(x) при соответствующих по абсолютной величине отрицательных (положительных) значениях х. Таким образом, получаем следующее правило.
Для построения графика функции y = f(-x) следует построить график функции y = f(x) и отразить его относительно оси ординат. Полученный график является графиком функции y = f(-x)
f(x) => - f(x)
Ординаты графика функции y = - f(x) при всех значениях аргумента равны по абсолютной величине, но противоположны по знаку ординатам графика функции y = f(x) при тех же значениях аргумента. Таким образом, получаем следующее правило.
Для построения графика функции y = - f(x) следует построить график функции y = f(x) и отразить его относительно оси абсцисс.
Как уже отмечалось, для четной функции y = f(x) во всей области изменения ее аргумента справедливо соотношение f(x) = f(-x). Следовательно, функция такого рода принимает одинаковое значение при всех значениях аргумента, равных по абсолютной величин, но противоположных по знаку. График четной функции симметричен относительно оси ординат.
Для построения графика четной функции y = f(x) следует построить ветвь графика этой функции только в области положительных значений аргумента (х³0). График функции y = f(x) в области отрицательных значений аргумента симметричен построенной ветви относительно оси ординат и получается отражением ее относительно этой оси.
Для нечетной функции y = f(x) в области всех значений аргумента справедливо равенство f(-x) = - f(x). Таким образом, в области отрицательных значений аргумента ординаты графика нечетной функции равны по величин, но противоположны по знаку ординатам графика той же функции при соответствующих положительных значениях х. График нечетной функции симметричен относительно начала координат.
Для построения графика нечетной функции y = f(x) следует построить ветвь графика этой функции только в области положительных значений аргумента (х³0). График функции y = f(x) в области отрицательных значений аргумента симметричен построенной ветви относительно начала координат и может быть получен отражением этой ветви относительно оси ординат с последующим отражением в области отрицательных значений относительно оси абсцисс.
Как уже отмечалось, прямая и обратная функции выражают одну и ту же зависимость между переменными х и у, с тем только отличием, что в обратной функции переменные поменялись ролями, что равносильно изменению обозначений осей координат. Поэтому графиком обратной функции симметричен графику прямой функции относительно биссектрисы I и III координатных углов, т.е. относительно прямой y = x. Таким образом, получаем следующее правило.
Для построения графика функции y = j(x), обратной по отношению к функции y = f(x), следует построить график y = f(x) и отразить его относительно прямой y = x.
f(x) => A·f(x)
Рассмотрим функцию вида y = A·f(x), где A>0. Нетрудно заметить, что при равных значениях аргумента ординаты графика этой функции будут в A раз больше ординат графика функции у = f(x) при A>1 или 1/A раз меньше ординат графика функции y = f(x) при A<1. Таким образом, получаем следующее правило.
Для построения графика функции y = A·f(x) следует построить график функции y = f(x) и увеличить его ординаты в A раз при A>1(произвести растяжение графика вдоль оси ординат) или уменьшить его ординаты в 1/A раз при A<1(произвести сжатие графика вдоль оси ординат). Полученный график является графиком функции y = A·f(x).