Смекни!
smekni.com

Дискретная математика (стр. 8 из 10)

3. Существует графический способ склеивания, который получил название метод карты Карно (представлен в табл. 10). Выделяем смежные единицы, это и будут слагаемые нашей функции.

Таблица 10

x3x4x1x2 00 01 11 10
00 0 0 1 1
01 1 0 0 0
11 1 0 0 0
10 0 0 0 0

– получили два слагаемых

Хотя табл. 9 более громоздка, чем табл. 8, метод сочетания индексов не считается более сложным, чем метод Куайна, если помнить, что до составления таблиц Куайна необходимо произвести многочисленные склейки конституент и импликант. Реализация на компьютере алгоритма метода сочетания индексов оказывается сравнительно простой. И напротив, внешняя простота и наглядность третьего метода минимизации логических функций с помощью карт Карно оборачивается сложной программой при реализации алгоритма на компьютере.

Таблица 11

1100 1110 0110 0100
1101 1111 0111 0101
1001 1011 0011 0001
1000 1010 0010 0000

Таблица 12

Карта Карно для четырех переменных представлена в виде табл. 11. Каждая клетка карты соответствует конституенте. Заполненная карта представлена табл. 12 (функция взята та же, что и в первых двух методах). Согласно закону склеивания, две смежные конституенты с единичными значениями всегда можно объединить для получения соответствующей импликанты. Причем смежными считаются и те, которые лежат на границах карты. Какие именно единицы требуется объединить для получения подходящей импликанты, легко определить визуально. Следует также помнить, что в соответствии с законом идемпотентности одна и та же единица табл. 12 может склеиваться с двумя или тремя смежными единицами.

Контрольные вопросы

1. Перечислите основные методы минимизации функций.

2. Расскажите о методе Куайна.

3. Расскажите о методе карт Карно.

3.9 Неполностью определенные логические функции

Ранее мы рассматривали ситуации, когда на множество аргументов или логических переменных x1, x2,…, xn не накладывались ограничения, или, что то же самое, функции были определены на всем наборе аргументов. Однако реально на практике функции либо не определены полностью, либо есть запрещенные комбинации. Необходимо доопределить функцию таким образом, чтобы аналитическая форма ее представления была минимальной, далее производят склейки (пример приведён в табл. 13).

Таблица 13

x3x4x1x2 00 01 11 10
00 0* 0 1* 0
01 1* 1 1 1*
11 0 0 1 0*
10 0* 0* 1* 0*

.

* – эти значения доопределили сами, исходя того, чтобы выражение для функции F было минимальным.

3.10 Формы представления булевых функций

К настоящему времени мы знакомы с двумя формами представления булевых функций: таблица истинности и формула (аналитическая запись). Рассмотрим еще две формы представления таких функций.

3.10.1 Семантические деревья

Семантическое дерево – это двоичное дерево, корень которого помечен двоичной функцией от m переменных, из каждого узла идут по два ребра, соответствующих двум значениям очередной переменной, а 2m листьев помечены соответствующими значениями функции.

3.10.2 Бинарные диаграммы решений (БДР)

Бинарная диаграмма решений (BinaryDecisionDiagrams, BDD) – это граф, являющийся модификацией семантического дерева. В БДР узлы с одним и тем же значением функции объединены. Если на каждом уровне БДР все вершины имеют одну и ту же метку (одинаковые переменные), то такая БДР называется упорядоченной (в англоязычной литературе такое представление называется OrdinaryBinaryDecisionDiagrams, или сокращенно OBDD). Будем называть такое представление УБДР. Вершины УБДР расположены по уровням, каждому уровню соответствует одна переменная, которая помечает вершины, находящиеся на этом уровне. Из каждой вершины выходят два ребра: одно соответствует нулевому значению соответствующей переменной (будем его изображать штриховой линией), а другое – единичному значению этой переменной (оно изображается сплошной линией).

На рис. 4 показаны все четыре формы представления функции

.

Бинарные диаграммы решений используются как компактная форма представления булевой функции. Такое представление полезно во многих случаях, например, когда нужно многократно вычислять значения функции при различных наборах значений ее аргументов. Для того чтобы получить значение функции f, например, на языке С, вместо хранения громоздкой таблицы истинности можно вычислить оператор: f=q? (r? 0:1): (р? 0:1), который построен на основании БДР (см. рис. 4). В этом примере использование УБДР позволяет вычислить значение булевой функции, выполнив всего две операции, в то время как при ее вычислении по аналитическому представлению требуется не менее 5 операций.


Рис. 4. Четыре формы представления двоичной функции

f (p, q, r) Таблица истинности Семантическое дерево Бинарная диаграмма решений

Сложность представления функции с помощью УБДР существенно зависит от порядка переменных. Так, например, УБДР для иного порядка переменных, чем на рис. 4, содержит четыре вершины, а не три (рис. 5). Интересной проблемой теоретической информатики является нахождение алгоритма, дающего оптимальный порядок переменных булевой функции с точки зрения представления этой функции упорядоченной БДР.

Рис. 5. УБДР для функции

с порядком переменных [p, q, r]

3.11 Построение логических схем

При синтезе логических схем применяют элементы с одним и несколькими входами. Условия функционирования таких элементов определяются переключательными функциями одной или нескольких переменных.

Входные и выходные сигналы логических схем зависят от времени (одни из них в некоторый момент времени равны 1, в другие моменты времени 0). Логические функции, описывающие работу таких схем, называют переменными. Используют также схемы, для которых во все моменты времени сигналы равны либо 1, либо 0. Логические функции, описывающие работу этих схем, называют постоянными.