Смекни!
smekni.com

Дифференциальное исчисление (стр. 2 из 5)

ТАБЛИЦА 1

№ п/п Наиме-нование уч. Дисцип-лины Распределение по семестрам Мин. кол-во конт. работ Количество часов
Экзамен Зачет Курсовая Всего Теоретические занятия Практические и семинарские занятия Лабораторные занятия Курсовой проект 18нд 12нд 13нд 13нд
1. Цикл общеобразовательных
1 Высшая математика 7 7 1 91 35 13 13 30 91

Из учебного плана видно, что на предмет "Высшая математика" всего отводится 91 час. Из них 35 – теоретических, 13 – практических, 13 часов отводится на лабораторные занятия и 30 часов отведено на курсовой проект. Минимальное количество контрольных работ составляет 1 работа. Зачета нет. Курсовой проект сдается в 7 семестре. Экзамен проводится в 7 семестре. Предмет "Высшая математика" изучается на 3 курсе. В 7 семестре обучения 13 недель, в неделю по 7 часов: 13*7=91 час. Предмет полностью изучается на 3 курсе в 7 семестре.

Тематический план

Тематический план – является частью учебной программы. Учебная программа - это документ, в котором дается характеристика содержания изучаемого материала по годам обучения и разделам (темам). Тематический план состоит из разделов, в которые входят темы. Тематический план распределяет часы по разделам из общего количества часов. В тематическом плане по предмету "Высшая математика" в разделе "Дифференциальное исчисление" отводится 36 часов.

ТАБЛИЦА 2

№ п/п Наименование темы Количество часов
Всего Теоретические занятия ЛПЗ
Раздел 1. Дифференциальное исчисление 36 22 14
1 Производная 2 2
2 Производная суммы, разности, произведения и частного функции 2 2
3 Контрольная работа 2 2
4 Производная сложной, обратной и параметрически заданной функций 2 2
5 Производные некоторых элементарных функций 2 2
6 Производные высших порядков 4 2 2
7 Правило Лопиталя 2 2
8 Приложения производной к исследованию функций 4 2 2
9 Построение графиков функций 2 2
10 Решение задач на наибольшее и наименьшее значение функций 2 2
11 Контрольная работа 2 2
12 Дифференциал функции 2 2
13 Формула Тейлора 4 2 2
14 Приближенное вычисление корней уравнений 2 2
15 Контрольная работа 2 2

На изучение раздела "Дифференциальное исчисление" в предмете "Высшая математика", дается 36 часов. Из них: 22 часа теоретических занятий и 14 часов посвящены практическому изучению.

Календарно-тематический план

Календарно-тематический план – планирующее учетный документ, его целями является определение тематики, тип метода и оснащение уроков по выбранному предмету. Составление календарно-тематического плана является первым шагом создания поурочной систематизации. Исходным документом здесь является учебная программа. Календарно тематический план предусматривает межпредметные связи. При соответствии календарно-тематического плана учебной программе ориентируются на тематический план при составлении поурочного плана. Календарно-тематический план (см. таблицу 3).


Разработка урока

Изучая учебную программу, преподаватель внимательно анализирует каждую тему, что дает возможность четко определить содержание обучения, установить межпредметные связи. На основе учебной программы составляется календарно-тематический план и уже на основе календарно-тематического плана составляется поурочный план. При определении цели и содержания урока, вытекающей из учебной программы, определяется содержание записи, умений и навыков, которые учащиеся должны усвоить на данном уроке. Анализируя предыдущие уроки, и устанавливая в какой мере решены их задачи, выясняют причину недочетов, и на основе этого определяют какие изменения необходимо внести в проведения данного урока. Намечают структуру урока и время на каждую ее часть, формируют содержание и характер воспитательной работы во время урока.

План урока

Предмет: Высшая математика Группа 636

Тема: Производная

Цели:

а) обучающая: Познакомить учащихся с понятием производная, рассказать о ее свойства и методы нахождения

б) развивающая: Развить интерес к решению задач по данной теме

в) воспитательная: Выработать потребность в самообразовании

Тип урока: целевой

Метод изложения: словесный

Наглядные пособия: плакат

Время: 90 мин.

Ход урока

I. Вводная часть:

1. Организационный момент: проверка по рапортичке время 2 мин.

2. Проверка домашнего задания: время 15 мин.

Тест (приложение 1)

II. Основная часть:

1. Сообщение цели новой темы

2. Изложение нового материала время 40 мин.

а) Задачи, приводящие к понятию производной

б) Производная функции

в) Физический и геометрический смысл производной

г) Вычисление производной на основе ее определения

д) Дифференцируемость непрерывной функции

3. Ответы на вопросы учащихся время 10 мин.

4. Закрепление нового материала время 20 мин.

Самостоятельная работа по 4 вариантам (приложение 2)

III. Заключительная часть: время 3 мин.

1. Подведение итогов

2. Задание на дом: повторение темы, № 229, 235, 238

3. Заключительное слово преподавателя

Преподаватель:___________________________

Список литературы

1. Г.Л. Луканкин, Н.Н. Мартынов "Высшая математика", Москва "Просвещение" 1988 год

2. Ю.К. Бабанский "Высшая математика", Москва "Просвещение" 1988 год

3. Ю.К. Бабанский "Высшая математика", Москва "Просвещение" 1983 год

4. И.Н. Бронштейн, К.А. Семендяев "Справочник по математике", Москва "Просвещение" 1990 год

Приложение 1

ТЕСТ

1. Найдите предел

а) 9

б)

в) -9

г) -8

2. Вычислите предел

а) 5

б) -1

в) -5

г) -

3. Вычислите предел

а) cos

б)

в)

г)

4. Вычислите предел

а) -2

б)

в)

г) 2

5. Вычислите предел

а) -1

б) 2

в) -5

г) 1

Правильный ответ г)

Приложение 2

САМОСТОЯТЕЛЬНАЯ РАБОТА

1. Найти мгновенную скорость в момент времени t0 свободного падения тела в поле тяжести Земли (I, II, III, IV).

2. Точка движется прямолинейно по закону x(t) = V0t +

. Найдите мгновенную скорость этой точки:

I в.: при t = 0

II в.: в момент t0

III в.: при t = 7

IVв.: в момент времени t = 7c

3. Найдите производную функции:

I в.: f(x) = x2

II в.: f(x) = 2x3 + 4x + 4

III в.: f(x) =

IVв.: f(x) = 3x2 + 4

4. Найдите производную функций в точках x = 1, x = 3.

I в.: f(x) =

II в.: f(x) = (x + 5)2

III в.: f(x) = 4 – x3

IVв.: f(x) = 5x4 + 2x3 – 3x + 6

5. Найдите производную функций в данных точках.

I в.: f(x) = cosx, при х =

II в.: f(x) = tgx, при х =

III в.: f(x) =cos 2x, при х =

IVв.: f(x) = x2 + 4x + 72, при х = -5

Приложение 3

Конспект урока на тему "Производная"