Окончательный вывод в случае «-»: cиb – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с иb» ( сb= СВ = const´, с – b= - С + В = const´´, с – b= - 2К = const´´´ ) выполняются, то Случаи27 и «-» имеют одинаковый вид окончательных решений уравнения (15), т.е. cиb – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых
решений.********
«Новый» случай 28
(Отличающийся «новым свойством » от случая 14: с = -С, b= -В, n= N, K)
Случай 28. Случай «+».
с = - В (16-B), с = С (16),
b= - С (17-C), b= В (17),
n= N(18),n= N(18),
K(19), K(19).
Окончательный вывод в случае «+»: cиb – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением » и его «Выводом».
Т.к. «Общие свойства для с иb(сb= СВ = const´, с – b= С - В = const´´, с – b= 2К = const´´´ ) выполняются, то Случаи28 и «+» имеют одинаковый вид окончательных решений уравнения (15), т.е. cиb – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых
решений.********
Вывод
1. Таким образом, «Новые» случаи 23,…, 28 новых возможных решений уравнения (15) не выявили.
2. Условия 1 и 2 ( продолжения ) Утверждения(1) нами рассмотрены.
*********
Итак, уравнение (15) , если c и b – взаимно простые целые нечетные числа, имеет решение (после анализа всех полученных решений) только в следующих целых числах:
а) ; ; ; ;
б) ; ; ; .
А это в свою очередь означает, что и рассматриваемое уравнение ( , - натуральные числа, где при - натуральном) может иметь целые решения либо при , либо при .
************
Вывод: 2-я часть «Утверждения 1» доказана.
В результате исследования уравнения (1) мы имеем:
Вывод 1. Уравнение (1) ( , - натуральные числа, при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
Возможны случаи: либо , либо .
*******
В качестве подтверждения можно рассмотреть такой пример.
Пример
Нетрудно доказать вышерассмотренным методом, что уравнение (42), где
- натуральное число, a – четное, b и c нечетные целые числа, не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b, c.(Хотя ход доказательства несколько отличается, т.к. = = с + b - число четное при q = 2 и b и c нечетных целых числах).При «Исключением» являются , или .
(При «Исключением» являются, например, или ,при которых а = 2 ивыполняется тождество (этот случай рассматривать не будем).
Действительно, решениями уравнения, например, a3 = c2 - b2 (43)являются (это хорошо известно в теории чисел) следующие выражения:
a = α2 – δ2 - четное число при α и δ– нечетных или четных.
c = α3 + 3αδ2 - четное число при α и δ – нечетных или четных.
b = 3α2δ + δ3 - четное число при α и δ – нечетных или четных.
(Такой же результат получается (a, c, b – четные числа) для любого уравнения
(42), где - натуральное.)
Однако вернемся к уравнению (43) a3 = c2 - b2.
«Исключением» являются следующие его решения:
1. b = ±1; c = ±3; a = 2 (при r = 1 и = ±3);
2. b =
3; c = ±1; a = -2 (при r = -1 и = 3),при которых получаем соответственно тождества:
1. 23 ≡ (±3)2 – (±1)2
2. (-2)3 ≡ (±1)2 – (±3)2
**********
Примечание.
1. Великая теорема Ферма для
доказывается аналогичным способом, примененным при доказательстве «Утверждения 1», в результате чего возникает «противоречие» при оценке четности чисел a, b, c. Это мы покажем ниже при доказательстве «Утверждения 2».2. Для степени p = 2 в уравнении такого «противоречия» при оценке четности чисел a, b, c не возникает.
3. Данное «Утверждение 1» автоматически доказывает справедливость Великой теоремы Ферма для показателя
простом, т.к. она является частным случаем этого «Утверждения 1» при простом. Имея дело с уравнением (44) , где простое, a, b, c - целые отличные от нуля числа, становится возможным применение метода бесконечного спуска, о чем в свое время упоминалось самим Ферма.