*******
В остальных 14 «похожих» случаях, где опять же = ± N= ± (
Это значит, что мы опять придем к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых
********
Вывод. Следовательно, это уравнение (1) в данном Условии 3 не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Вывод
1. Таким образом, в вышеприведенных Условиях 1 (начало), 2 (начало) и 3 уравнение (1) (1), где
- четное натуральное число, не имеет решений в целых попарно взаимно простых
отличных от нуля числах.
2.1-я часть «Утверждения 2» (для Условий 1(начало), 2 (начало) и 3) доказана.
*********
Часть вторая(Утверждения 2)
Случаи (либо b = ± 1, либо c = ± 1) ОТСУТСТВУЮТ.
Доказательство
Казалось бы, мы должны рассмотреть еще моменты в Условиях 1 и 2, когда перед скобками в (12), …, (15) стоятразные знаки (как при доказательстве «Утверждения 1» в части 2). Интуиция подсказывает, что эта процедура опять нас приведет к известным значениям b и c: либо
Для подтверждения сказанного рассмотрим подробно только часть Условия 1.
Условие 1 (продолжение).
Случай 1.
которые также являются решениями уравнения (11)
Тогда сумма
Учитывая (10) и (15), можно получить разность
Выразим из (17) и (16)
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель
.
Т.о.,
Т.к. из (4) c2 + b2 = 2 β, то
Из (15) с учетом (20) выразим
Т.о.,
выражения которых, с учетом (24), полностью совпадают с (6) и (7), т.е. с уравнениями
Теперь, с учетом (13′) и (14), найдем сумму :
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем).
Теперь, учитывая (23), получим значение для b2:
(20′).
Итак, (28), что для целых чисел неприемлемо.
Этот случай нас не интересует.
********
Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.
Учитывая (26), получим
Теперь, с учетом (29), можно получить окончательное выражение для с2 (из (25)):
Таким образом, уравнение
,
,
(28),
,
где - взаимно простые нечетные целые числа.
*******
Случай 2
Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположныепо знаку с решениями (12), (13′) , (14), (15), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30), (28), (29) и (24), т.е.
Случай 3