ОБЩИЙ ВЫВОД
1. Уравнение ( , - натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
2. Но есть и «исключение» из данного утверждения: среди этих чисел , и может быть либо , либо .
Таким образом, «Общее утверждение»доказано.
ЛИТЕРАТУРА:
1. Алексеев С.Ф. Два обобщения классических формул // Квант. – 1988. - №10. – С. 23.
2.Постников М.М. Введение в теорию алгебраических чисел. – М., Наука. – 1982 - С. 13.
Май 2009 г., Скворцов А.П.
Уважаемые любители математики и специалисты!
Если не трудно, попробуйте разобраться с данной работой и по возможности ее оценить.
Если в ней есть что-то стоящее, интересное, то очень хотелось бы получить отзыв о данной работе.
Я убежден, что примененный мною метод в данной работе позволит провести анализ и некоторых других уравнений на их разрешимость в целых числах.
Предлагаю вашему вниманию перечень некоторых моих работ по физике и математике, с некоторыми из них ознакомлены специалисты некоторых ВУЗов г. Томска, с другими – учителя и учащиеся г. Колпашева. А работа по физике (я сам учитель физики) о существовании гипотетических гравитационно-временных волн («Гравитация и время») в популярном изложении опубликована на страницах журнала «Знак вопроса» №4-2004 г.
Работы по математике:
1. Построение с помощью циркуля и линейки отрезка, равного произведению двухдругих отрезков.
2. Построение с помощью циркуля и линейки отрезка, равного отношению двухдругих отрезков.
3. Нахождение действительных корней приведенного квадратного уравнения с помощью циркуля и линейки.
4. Решение уравнения в целых числах при - натуральном.
5. Доказательство неразрешимости в рациональных ненулевых числахуравненияр1+ р2 = р3, где произведениер1 р2 р3 = R3,R – рациональное число (или рациональная функция), р1, р2 и р3могут быть не только рациональными числами, но и рациональными функциями.
6. Доказательство неразрешимости в рациональных ненулевых числах системы
р1+р2+р3 =р4р1 р2 р3 р4 = ,
где kможет принимать значения k = 1; 2; 3; 4, и р1, р2 , р3и р4могут быть не только рациональными числами, но и рациональными функциями.
Мне можно писать по электронному адресу: skvorsan@mail.ru
Мой почтовый адрес: 636460 г. Колпашево Томской обл.,
м/р-н Геолог, д.18, кв.11
тел.: 8 (38 254) 5 79 59.
С уважением, А.П. Скворцов.