Работа Скворцова Александра Петровича,
учителя, ветерана педагогического труда
Доказательство утверждения, частным случаем которого является великая теорема Ферма
Содержание
Общее утверждение
Утверждение 1
Доказательство Части первой «Утверждения 1»
Доказательство Части второй «Утверждения 1»
Пример
Примечание
«Вывод» о Великой теореме Ферма (простое)
Утверждение 2
Доказательство Части первой «Утверждения 2»
Доказательство Части второй «Утверждения 2»
Примечание
Окончательный «Вывод» о Великой теореме Ферма
Утверждение 3
Доказательство Части первой «Утверждения 3»
Доказательство Части второй «Утверждения 3»
Примечание
Общий вывод
Литература
Доказательство нижеприведённого «Утверждения» осуществлено элементарными средствами. В данной работе рассматриваются уравнения , частными случаями которых являются уравнения Ферма , где а – чётное число, и - целые числа, , ,
- =натуральные числа.Метод, используемый в этой работе, опирается на применение дополнительного квадратного уравнения
и его общего решения, чётность которого совпадает с числами, исследуемыми в моей работе.Этот метод позволяет:
1. Судить о возможности существования целых решений уравнения Ферма для
, т.е. о возможности существования «Пифагоровых троек», т.к. при рассуждениях никаких «противоречий» не возникает (доказательство этого в данной работе не приведено).2. Судить об отсутствии решений в попарно взаимно простых целых числах уравнения , где - натуральное число, а – чётное число, т.к. при рассуждениях возникают «противоречия» (доказательство этого в данной работе не приведено, но дан пример на стр. 33).
3. Судить о возможности существования частного решения уравнения при (илиb = ±1, или c = ±1), которое входит в п. «Исключения» моего общего «Утверждения». И такие решения следующие:
а) b = ±1; c = ±3; a = 2.
б) b =
3; c = ±1; a = -2 («Пример» на стр. 33).4. Судить о неразрешимости в целых числах уравнения , гдеа – чётное число. Это хорошо известный факт в теории чисел (доказательство этого в данной работе приведено).
5. Судить о неразрешимости в целых числах и уравнения Ферма . Это тоже хорошо известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).
6. Судить о неразрешимости в целых числах уравнения Ферма , где
- натуральное число. Это тоже уже известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).**********
Так как данное доказательство «Общего Утверждения» в этой работе проведено мною элементарными средствами, то думаю, и своё «Утверждение» великий Ферма вполне мог доказать подобным методом.
И последнее. Я думаю, что специалистам, наверное, известны ещё некоторые конкретные примеры (частные случаи уравнения ), подпадающих под доказываемое в данной работе «Общего Утверждения». Если такие примеры имеются, то в свою очередь это будет являться дополнительным подтверждением правильности выбранного пути доказательства вышеназванного «Общего Утверждения».
≥
ОБЩЕЕ УТВЕРЖДЕНИЕ, частным случаем которого является Великая теорема Ферма
1. Уравнение ( , - натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
2. Но есть и «исключение» из данного утверждения: среди этих чисел , и может быть либо , либо .
***********
Чтобы доказать «ОБЩЕЕ УТВЕРЖДЕНИЕ», необходимо рассмотреть2 случая
для показателя q:
1)
при - натуральном;2)
при - натуральном, а для этого достаточно рассмотреть случай .Утверждение 1, частным случаем которого является Великая теорема Ферма, для простого показателя
Часть 1
Уравнение ( , - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
Часть 2
Возможны случаи: либо , либо .
**********
Последнее утверждение (либо
, либо ) в дальнейшем будем называть «исключением» из общего правила.*********
Часть первая(Утверждения 1)
Уравнение ( , - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.