Сказанное позволяет увидеть уникальность и универсальность учебной дисциплины для развития познавательных способностей человека, расширения круга используемых мыслительных средств и умственных операций, что, в свою очередь, повышает адаптивные возможности человека.
Все перечисленное показывает необходимость рассматривать графическое образование как необходимую составляющую содержания общего образования, отвечающую принципам гуманизации, гуманитаризации, культуросообразности, обеспечивающих коммуникативное и технологическое образование учащихся.
Исходя из вышесказанного, можно сделать следующие выводы:
1. Использование интегрированных заданий в курсе «Черчение» положительно влияет на мотивацию школьников к учебным предметам, способствует лучшему усвоению знаний, и более качественному формированию умений и навыков геометрических построений.
2. Геометрические построения являются интегрированными умениями, необходимыми в различных школьных предметах.
3. Формирование навыков геометрических построений способствует развитию наглядно-образного мышления, репродуктивного и продуктивного воображения, пространственных представлений, а значит способности эффективной обработки информации.
Данная работа может применяться на уроках черчения (с использование компьютерной техники), а также на факультативных и пропедевтических курсах по технической графике, основам дизайна и т.д.
В дальнейшем, работа над этой темой может быть продолжена. Можно разработать учебно-методический комплект для факультативных занятий учащихся 7-х классов, в основу заданий которого будет положен принцип геометрических построений.
1. Атанасян Л.С., Базылев В.Т. Геометрия. Часть первая. М.: Просвещение, 1986. – 268 с.
2. Аргунов Б.М., Балк М.Б. Элементарная геометрия. М.: Просвещение, 1986. – 422 с.
3. Бахман Ф.М. Построение геометрии на основе понятия симметрии. М.: Просвещение, 1969. – 356 с.
4. Беккер Б.М., Некрасов В.Б. Применение векторов к решению задач. С-Пб.: Питер, 1997. – 188 с.
5. Беляев М.И. Природные механизмы законов сохранения. Симметрия и асимметрия. М.: Наука, 2007. -126 с
6. Берман Г.Н. Циклоида. Об одной замечательной кривой линии и некоторых других, с ней связанных. 3-е изд. М.: Наука, 1980. – 112 с.
7. Боголюбов С.К. Задания по курсу черчения (в двух книгах): Учеб. пособие для техникумов. – Книга первая: Основы черчения и начертательной геометрии. М.: Высш. школа, 1978. – 168 с.
8. Ботвинников А.Д. Об актуальных вопросах методики обучения черчению. Пособие для учителя. М.: Просвещение, 1977. – 191 с.: ил.
9. Вигнер Ю. Симметрия и законы сохранения. М.: Наука, 1963. – 122 с.
10. Вигнер Ю. Роль принципов инвариантности в натуральной философии. М.: Наука, 1964. – 162 с.
11. Виленкин Н.Я. Функции в природе и технике: Кн. для внеклас. чтения IX-X кл. – 2-е изд., испр. – М.: Просвещение, 1985. – 192 с. – (Мир знаний).
12. Вольхин К.А.. Астахова Т.А. Геометрические основы построения чертежа. Геометрическое черчение. Электронное учебное пособие. Новосибирск, 2004
13. Воротников И.А. Занимательное черчение. 2-е изд., доп. М.: Просвещение, 1969. – 149 с.: ил.
14. Гервер В.А. Творчество на уроках черчения: Книга для учителя. – М.: Гуманит. изд. Центр ВЛАДОС, 1998. – 144 с.: ил.
15. Глейзер Г.И. История математики в школе: IX-X кл. Пособие для учителей. – М.: Просвещение, 1983. – 351 с.: ил.
16. Дадаян А.А. Основы черчения и инженерной графики. Геометрические построения на плоскости и в пространстве. М.: Изд-во Форум, 2007. – 464 с.: ил.
17. Емельянов А.Е. Универсальная геометрия в природе и архитектуре. (Симметрия, гармония, абсолютные системы отсчета). Донбасс, 1990.
18. Козлова Н.В. Принцип интегрирования в обучении черчению учащихся 7-го класса. Методические рекомендации для учителей черчения и студентов художественно-графического факультета педагогического института. Нижний Тагил: НТГПИ, 1997. – 40 с.
19. Мандельброт Бенуа. Фрактальная геометрия природы. М.: Институт компьютерных исследований, 2002. – 660 с.: ил.
20. Маркушевич А.И. Замечательные кривые. М.: Наука, 1978. – 48 с.: ил.
21. Монж Г. Начертательная геометрия./ Комментарии и редакция Д.И. Каргина.- М.: АН СССР, 1974. – 291 с.
22. Пантуев А.В.. Виртуальные лаборатории и активизация работы школьников. Сб. Стимулирование познавательной деятельности студентов и школьников, М: МГПУ, 2002. С. 30-33.
23. Покровский, В.Г. Геометрические построения на плоскости: учебное пособие / В.Г. Покровский – М.: МЦНМО, 2002.– 98 с.
24. Потоцкий М.В. Что изучает проективная геометрия? М.: Просвещение, 1982. – 342 с.
25. Пидоу Д. Геометрия и искусство. Пер. с англ. Ю.А. Данилова под ред. и с предисл. И.М. Яглома. – М.: Мир, 1979. – 332 с.: ил. (В мире науки и техники).
26. Репникова Г.Г. Геометрические преобразования пространства. Ставрополь, 1992. – 168 с.
27. Сонин А.С. Постижение совершенства. М.: Высш. школа, 1987. – 324 с.
28. Степакова В.В. Методическое пособие по черчению. Графические работы: Книга для учителя/ В.В. Степакова. – М.: Просвещение, 2001. – 93 с.: ил.
29. Тарасов Л.В. Симметрия в окружающем мире/Л.В. Тарасов. – М.: ООО «Издательский дом «ОНИКС 21 век!»: ООО «Издательство «Мир и Образование», 2005. – 256 с.: ил.
30. Узоры симметрии /Под ред. М. Сенешаль, Дж. Флека. М.: Наука, 1977. – 254 с.
31. Цейтен Г.Г. История математики в древности и средние века. ГТТИ, 1932. – 402 с.
32. Шарыгин И.А., Ерганжиева Л.Н. Наглядная геометрия. М.: Просвещение, 1995. – 378 с.
33. Шафрановский И.И. Симметрия в природе. – 2-е изд., перераб. – Л.: Недра, 1985. – 168 с.: ил.
Практическая часть