В 1699 вместе с Якобом избран иностранным членом Парижской Академии наук. В 1702 совместно с Лейбницем открыл приём разложения рациональных дробей на сумму простейших. В 1705 вернулся в Базельский университет, профессором греческого языка.
В 1708 после смерти брата Якоба (1705) приглашается на его кафедру в Базеле и занимает её до самой смерти (1748).
Другими научными заслугами Иоганна Бернулли являются постановка классической задачи о геодезических линиях и нахождение характерных геометрических свойств этих линий, а позднее вывод их дифференциальное уравнение. Необходимо также отметить, что он воспитал множество учеников, среди которых – Эйлер и Даниил Бернулли.
К его портрету Вольтер написал четверостишие:
Его ум видел истину,
Его сердце познало справедливость.
Он – гордость Швейцарии
И всего человечества.
В честь Якоба и Иоганна Бернулли назван кратер на Луне.
Даниил Бернулли
Даниил родился в Гронингене (Голландия), где его отец тогда преподавал математику в университете. С юных лет увлёкся математикой, вначале учился у отца и брата Николая, параллельно изучая медицину. После возвращения в Швейцарию подружился с Эйлером. В 1721 сдал экзамены на медика в Базеле, защитил диссертацию. Затем уехал в Италию, где набирался опыта в медицине. В 1724 выпустил «Математические этюды», принесшие ему известность. В 1725 вместе с братом Николаем уезжает по приглашению в Петербург, где по императорскому указу учреждена Петербургская академия наук. Занимается там медициной, но потом переходит на кафедру математики (1728), ставшую вакантной после смерти его брата Николая. Момент для приезда был чрезвычайно неудачным – как раз скончался Пётр I, началась неразбериха. Приглашённые в Академию иностранцы частично рассеялись, но Даниил остался и даже уговорил приехать друга Эйлера (1727). Но тут умерла императрица Екатерина I, и властям окончательно стало не до Академии. Вскоре Даниил возвращается в Базель. Он остался почётным членом Петербургской академии, в её журнале опубликованы 47 из 75 трудов Даниила Бернулли.
В 1728 напечатал «Замечания о рекуррентных последовательностях». В 1733 устроился профессором анатомии и ботаники в Базеле (других вакансий не было). Ведёт оживлённую, взаимно-полезную переписку с Эйлером. В 1738 как результат многолетних трудов выходит фундаментальный труд «Гидродинамика». Среди прочего там основополагающий «закон Бернулли». Дифференциальных уравнений движения жидкости в книге ещё нет (их установил Эйлер в 1750-е годы).
В течение 1747–1753 выходит в свет важная серия работ о колебаниях струны. Бернулли, исходя из физических соображений, догадался разложить решение в тригонометрический ряд. Он провозгласил, что этот ряд не менее общий, чем степенной. Эйлер и Даламбер выступили с возражениями. Вопрос был решён только в XIX веке, и Бернулли оказался прав.
В 1748 избран иностранным членом Парижской Академии наук. В 1750 перешёл на кафедру физики Базельского университета, где и трудился до кончины в 1782 году. Умер за рабочим столом весной 1782 года.
Женат не был. Отношения с отцом колебались от натянутых до враждебных, споры между ними о приоритете не утихали.
Более всего Даниил Бернулли прославился трудами в области математической физики и теории дифференциальных уравнений – его считают, наряду с Даламбером и Эйлером, основателем математической физики.
Физик-универсал, он основательно обогатил кинетическую теорию газов, гидродинамику и аэродинамику, теорию упругости и т.д. Он первый выступил с утверждением, что причиной давления газа является тепловое движение молекул. В своей классической «Гидродинамике» он вывел уравнение стационарного течения несжимаемой жидкости (уравнение Бернулли), лежащее в основе динамики жидкостей и газов. С точки зрения молекулярной теории он объяснил закон Бойля-Мариотта.
Бернулли принадлежит одна из первых формулировок закона сохранения энергии (живой силы, как тогда говорили), а также (одновременно с Эйлером) первая формулировка закона сохранения момента количества движения (1746). Он много лет изучал и математически моделировал упругие колебания, ввёл понятие гармонического колебания, дал принцип суперпозиции колебаний.
В математике опубликовал ряд исследований по теории вероятностей, теории рядов и дифференциальным уравнениям. Он первый применил математический анализ к задачам теории вероятностей (1768), до этого использовались только комбинаторный подход. Бернулли продвинул также математическую статистику, рассмотрев с применением вероятностных методов ряд практически важных задач.
Даниил являлся Академиком и почетным иностранным членом Петербургской академии наук(1733), членом Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Лауреат многочисленных премий и призов в конкурсах.
Якоб II Бернулли
Якоб получил юридическое образование, но затем переключился на физику и математику. После неудачной попытки занять кафедру физики в Базеле, освободившуюся после смерти Даниила Бернулли (1782), Якоб уехал в Италию и поступил на дипломатическую службу. В 1786 году он переселился в Россию. Женился на внучке Эйлера. Служил в Академии наук и Кадетском корпусе. Погиб в возрасте 30 лет в результате несчастного случая при купании в Неве.
Якоб Бернулли успел опубликовать незаурядные работы по различным вопросам механики, теории упругости, гидростатики и баллистики: вращательному движению тела, укрепленного на растяжимой нити, течению воды в трубах, гидравлическим машинам. Вывел дифференциальное уравнение колебания пластин.
Математические объекты, названные в честь членов семьи
Дифференциальное уравнение вида:
с, n≠1, 0.называется дифференциальным уравнением Бернулли (в честь Якоба).
1. Делим левую и правую части на yn
2. Выполняем замену
3. Решаем дифференциальное уравнение
Оно может быть решено с использованием интегрирующего множителя
Делим на y2
Замена переменных
Умножаем на M(x),
Результат
Закон Бернулли
Закон Бернулли (в честь Даниила Бернулли) является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:
Здесь
ρ – плотность жидкости,
v – скорость потока,
h – высота, на которой находится рассматриваемый элемент жидкости,
p – давление.
Константа в правой части обычно называется напором, или полным давлением, а также интегралом Бернулли. Размерность всех слагаемых – единица энергии, приходящейся на единицу объёма жидкости. Для горизонтальной трубы h = 0 и уравнение Бернулли принимает вид:
Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности ρ:
Согласно закону Бернулли полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.
Полное давление состоит из весового (ρgh), статического (p) и динамического (
) давлений.Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров, водо- и пароструйных насосов.
Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела всегда в точности равна нулю.
Закон Бернулли можно применить к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда.
Согласно закону Бернулли приравняем полные давления на верхней поверхности жидкости и на выходе из отверстия:
где
p0 – атмосферное давление,
h – высота столба жидкости в сосуде,
v – скорость истечения жидкости.
Отсюда:
. Это – формула Торричелли. Она показывает, что при истечении идеальной несжимаемой жидкости из отверстия в широком сосуде жидкость приобретает скорость, какую получило бы тело, свободно падающее с высоты h.