Смекни!
smekni.com

Задачи математического программирования (стр. 2 из 6)

4. Динамическое программирование

Динамическое программирование представляет собой математические аппарат, позволяющий быстро находить оптимальное решение в случаях, когда анализируемая ситуация не содержит факторов неопределенности, но имеется большое количество вариантов поведения, приносящих различные результаты, среди которых необходимо выбрать наилучший. Динамическое программирование подходит к решению некоторого класса задач путем разложения на части, небольшие и менее сложные задачи. В принципе, задачи такого рода могут быть решены путем перебора всех возможных вариантов и выбора среди них наилучшего, однако часто такой перебор весьма затруднен. В этих случаях процесс принятия оптимального решения может быть разбит на шаги (этапы) и исследован с помощью метода динамического программирования.

Решение задач методами динамического программирования проводится на основе сформулированного Р.Э.Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы ни было первоначальное состояние системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения.

Таким образом, планирование каждого шага должно проводится с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию.

Вместе с тем динамическое программирование не является универсальным методом решения. Практически каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов для ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации.

Динамическое программирование применяется для решения таких задач, как: распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом и запасами; составление календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети и т.д.

Пусть процесс оптимизации разбит на n шагов. На каждом шаге необходимо определить два типа переменных – переменную состояния S и переменную управления X. Переменная S определяет, в каких состояниях может оказаться система на данном k-м шаге. В зависимости от S на этом шаге можно применить некоторые управления, которые характеризуются переменной X. Применение управления X на k-м шаге приносит некоторый результат Wk(S,Xk) и переводит систему в некоторое новое состояние S'(S,Xk). Для каждого возможного состояния на k-м шаге среди всех возможных управлений выбирается оптимальное управление X*k такое, чтобы результат, который достигается за шаги с k-го по n-й, оказался оптимальным. Числовая характеристика этого результата называется функцией Беллмана Fk(S) и зависит от номера шага k и состояния системы S.

Все решения задачи разбиваются на два этапа. На первом этапе, который называют условной оптимизацией, отыскиваются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего.

После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый, производится второй этап решения задачи, который называется безусловной оптимизацией.

В общем виде задача динамического программирования формулируется следующим образом: требуется определить такое управление X*, переводящее систему из начального состояния S0 в конечное состояние Sn, при котором целевая функция F(S0,X*) принимает наибольшее (наименьшее) значение.

Особенности математической модели динамического программирования заключаются в следующем:

задача оптимизации формулируется как конечный многошаговый процесс управления;

целевая функция является аддитивной и равна сумме целевых функций каждого шага

;

выбор управления Xk на каждом шаге зависит только от состояния системы к этому шагу Sk-1 и не влияет на предшествующие шаги (нет обратной связи);

состояние системы Sk после каждого шага управления зависит только от предшествующего состояния системы Sk-1 и этого управляющего воздействия Xk (отсутствие последействия) и может быть записано в виде уравнения состояния:

;

на каждом шаге управление Xk зависит от конечного числа управляющих переменных, а состояние системы Sk зависит от конечного числа переменных;

оптимальное управление X* представляет собой вектор, определяемый последовательностью оптимальных пошаговых управлений:

X*=(X*1, X*2, …, X*k, …, X*n),

число которых и определяет количество шагов задачи.

Условная оптимизация. Как уже отмечалось выше, на данном этапе отыскиваются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего в соответствии с алгоритмом обратной прогонки. На последнем n-м шаге найти оптимальное управление X*n и значение функции Беллмана Fn(S) не сложно, так как

Fn(S)=max{Wn(S,Xn)},

где максимум ищется по всем возможным значениям Xn.

Дальнейшие вычисления производятся согласно рекуррентному соотношению, связывающему функцию Беллмана на каждом шаге с этой же функцией, но вычисленной на предыдущем шаге:

Fk(S)=max{Wk(S,Xk)+Fk+1(S'(S,Xk))}. (1)

Этот максимум (или минимум) определяется по всем возможным для k и S значениям переменной управления X.

Безусловная оптимизация. После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый (на первом шаге k=1 состояние системы равно ее начальному состоянию S0), осуществляется второй этап решения задачи. Находится оптимальное управление на первом шаге X1, применение которого приведет систему в состояние S1(S,x1*), зная которое можно, пользуясь результатами условной оптимизации, найти оптимальное управление на втором шаге, и так далее до последнего n-го шага.


Лабораторная работа №1 (Задача линейного программирования)

Задание:

Для заданной математической постановки задачи ЛП, приняв дополнительно условие неотрицательности переменных, выполнить следующие действия:

Решить задачу графическим методом;

Привести задачу к канонической форме записи;

Составить симплексную таблицу;

Произвести решение задачи симплексным методом ручным способом или с использование компьютера;

Осуществить постановку двойственной задачи ЛП;

Получить решение двойственной задачи из полученной ранее симплексной таблицы и произвести анализ полученных результатов;

Проверить результаты решения в табличном процессоре Excel;

Составить отчет с приведение результатов по каждому пункту.

Ресурсы Запасы Продукция
Р1 Р2
S1 18 0.2 3
S2 13.1 0.7 2
МВ 23 2.3 2
Прибыль от единицы продукции в У.Е. 3 4

Решение:

Графический метод. Для построения многоугольника решений преобразуем исходную систему


, получим

изобразим граничные прямые.

Линейная функция F=f(x) является уравнением прямой линии c1x1 + c2x2 = const. Построим график целевой функции при f(x)=0. для построения прямой 3x1 + 4x2 = 0 строим радиус-вектор N = (3; 4) и через точку 0 проводим прямую, перпендикулярную ему. Построенную прямую F=0 перемещаем параллельно самой себе в направлении вектора N.


Из рисунка 1 следует, что опорной по отношению к построенному многоугольнику решений эта прямая становится в точке B, где функция F принимает максимальное значение. Точка В лежит на пересечении прямых 0,7x1 + 2x2 ≤ 13,1 и 2,3x1 + 2x2 =23/ Для определения ее координат решим систему уравнений:

Оптимальный план задачи: х1 = 6.187; х2 = 4.38, подставляя значения х1 и х2 в целевую функцию, получаем Fmax= 3*6.187+4*4.38=36.08.

Таким образом, для того, чтобы получить максимальную прибыль в размере 36.06 долларов, необходимо запланировать производство 6 ед. продукции P1 и 4 ед. продукции P2.

Канонический вид задачи ЛП. Запишем в канонической форме задачу распределения ресурсов. Добавив к исходной системе ограничений неотрицательные переменные х3 ≥ 0, х4 ≥ 0, х5 ≥ 0, имеем:

При этом в далее получаемом решении переменные х3 и х4 будут соответствовать объемам неиспользованного сырья S1 и S2, а х5 – неиспользованному машинному времени.