Симплексная таблица ЛП. В случае базисных переменных {x3, x4, x5} начальная симплекс таблица будет выглядеть:
Таблица 1.
-х1 | -х2 | ||
х3 = | 0,2 | 3 | 18 |
х4 = | 0,7 | 2 | 13,1 |
х5 = | 2,3 | 2 | 23 |
f(x) = | 3 | 4 |
Она уже соответствует опорному плану x(0) = [0 0 18 13,1 23]Т (столбец свободных членов).
Симплексный метод решения задачи ЛП. Для того, чтобы опорный план был оптимален, при максимизации целевой функции необходимо, чтобы коэффициенты в строке целевой функции были неотрицательными, т.е. при поиске максимума мы должны освободиться от отрицательных коэффициентов в строке f(x).
Алгоритм симплекс метода.
1. Выбор разрешающего столбца. В качестве разрешающего выбираем столбец с минимальным коэффициентом в строке f(x). В данном примере это столбец х2.
2. Выбор разрешающей строки. Для выбора разрешающей строки (разрешающего элемента) среди положительных коэффициентов разрешающего столбца выбираем тот элемент, для которого отношение коэффициентов в столбце свободных членов к коэффициенту в разрешающем столбце минимально. Разрешающий элемент рассчитывается по формуле:
В данном примере такой строкой будет строка х3, т.к. отношение коэффициента в столбце свободных членов к коэффициенту в разрешающем столбце минимально.
3. Замена базиса. Для перехода к следующей симплексной таблице (следующему опорному плану с большим значением целевой функции) делаем шаг модифицированного жорданова исключения с разрешающим элементом arl, при котором базисная переменная xr становится свободной и одновременно свободная переменная xi становится базисной.
3.1 на месте разрешающего элемента ставится 1 и делится на разрешающий элемент;
3.2 остальные элементы разрешающего столбца меняют знак на противоположный и делятся на разрешающий элемент;
3.3 остальные элементы разрешающей строки делятся на разрешающий элемент;
3.4. все остальные элементы симплексной таблицы вычисляются по формуле:
3.5. элементы правого столбца и нижней строки пересчитываются по тому же принципу, что и элементы в центральной части таблицы.
Симплексная таблица, рассчитанная по алгоритму:
Таблица 2.
-х1 | -х3 | ||
х2 = | 0,067 | 0,3 | 6 |
х4 = | 0,57 | -0,67 | 1,1 |
х5 = | 2,17 | -0,67 | 11 |
f(x) = | -3,27 | 1,3 | 72,6 |
Следующим разрешающим столбцом будет столбец х1, а разрешающей строкой – х4. Далее действуем по тому же алгоритму.
Таблица 3.
-х4 | -х3 | 1 | |
х2 = | -0,1 | 0,24 | 5,87 |
х1 = | 1,75 | -1,17 | 1,03 |
х5 = | -3,8 | 1,88 | 5,8 |
f(x) = | 5,7 | -2,5 | 35,06 |
Следующим разрешающим столбцом будет столбец х5, а разрешающей строкой – х3. Далее действуем по тому же алгоритму.
Таблица 4.
-х4 | -х5 | 1 | |
х2 = | 0,39 | -0,13 | 4,4 |
х1 = | -0,61 | 0,6 | 6,19 |
Х3 = | -2 | 0,53 | 1,3 |
f(x) = | 0,64 | 1,3 | 36,08 |
Конечная симплексная таблица:
Все коэффициенты в строке целевой функции положительны, т.е. мы нашли оптимальное решение.
Таким образом, в точке x1 = 4, x2 = 6, x3 = 1,3, x4 = 0, x5 = 0 целевая функция принимает максимальное значение f(x) = 36.
При этом переменным, которые стоят в верхней строке, в базисном решении присваивается значение 0 – это свободные переменные. Каждая из переменных, стоящая в левом столбце, приравнивается к числу, записанному в правом столбце той же самой строки – это базисные переменные.
Постановка двойственной задачи ЛП. Определить значение двойственных оценок можно следующим образом. если некоторый i-тый ресурс используется не полностью, т.е. имеется резерв, значит дополнительная переменная в ограничении для данного ресурса будет больше нуля. Очевидно, что при увеличении общего машинного времени не произошло бы увеличение целевой функции. Следовательно, машинное время не влияет на прибыль и для третьего ограничения двойственная переменная y3 = 0. Таким образом, если по данному ресурсу есть резерв, то дополнительная переменная будет больше нуля, а двойственная оценка данного ограничения равна нулю.
В данном примере оба вида сырья использовались полностью, поэтому их дополнительные переменные равны нулю (в итоговой симплексной таблице переменные х3 и х4 являются свободными, значит х3 = х4 = 0). Если ресурс использовался полностью, то его увеличение или уменьшение повлияет на объем выпускаемой продукции и, следовательно, на величину целевой функции. Значение двойственной оценки при этом находится в симплекс-таблице на пересечении строки целевой функции со столбцом данной дополнительной переменной.
Получить решение двойственной задачи из полученной ранее симплексной таблицы и произвести анализ полученных результатов. Формулировка и результаты решения исходной и двойственной задач распределения ресурсов приведены в таблице 4.
Таблица 4.
Исходная задача ЛП | Двойственная задача ЛП |
Математическая постановка | |
Обозначения и интерпретация параметров задачи | |
xj, j = - количество производимой продукции j-го вида;f(x) – общая прибыль от реализации продукции | yi, i = - стоимость единицы i-го ресурса; - стоимость всех имеющихся ресурсов |
Экономическая интерпретаци язадачи | |
Сколько и какой продукции необходимо произвести, чтобы пр заданных стоимостях cj, j = еддиницы продукции и размерах имеющихся ресурсов bi, i = максимизировать общую прибыль? | Какова должна быть цена единицы каждого из ресурсов, чтобы при заданных их количествах bi, i = и величинах стоимости единицы продукции cj, j = минимизировать общую стоимость затрат? |
Результаты решения | |
Результирующая симплекс-таблица |
Основные переменные
х1 = 6,19
х2 = 4,4
дополнительные переменные
х3 = 1,3
х4 = 0
х5 = 0
Дополнительные переменные
y4 = 0
y5 = 0
основные переменные
y1 = 0,64
y2 = 1,3
y3 = 0
Переменные | Целевая функция | ||||
Вид продукции | Р1 | Р2 | Прибыль | ||
Значение | 6,1875 | 4,3844 | 36,1 | ||
Прибыль от ед. прод. | 3 | 4 | макс | ||
Ограничения | |||||
Типы ресурсов | Р1 | Р2 | Расход ресурсов | Знак | Запас ресурсов |
Сырье S1 | 0,2 | 3 | 14,390625 | <= | 18 |
СырьеS2 | 0,7 | 2 | 13,1 | <= | 13,1 |
Машинное время | 2,3 | 2 | 23 | <= | 23 |
Но при применении надстройки «поиск решения» к задаче, двойственной данной задаче ЛП, приходим к выводу, что решение полученное с помощью надстройки не сходится с решением из симплекс-таблицы:
Таблица 7.
Переменные | |||||||
имя | x1 | x2 | f(x) | ||||
значение | 6,19 | 4,38 | 36,1 | ||||
коэф-ты f(x) | 3 | 4 | макс | ||||
Ограничения | двойств. Оценки | ||||||
№ | x1 | x2 | левая часть | знак | правая часть | y | |
1 | 8 | 3 | 62,653125 | <= | 18 | 1,333333 | |
2 | 0,7 | 2 | 13,1 | <= | 13,1 | 0 | |
3 | 2,3 | 2 | 23 | <= | 23 | 0 | |
Ограничения двойственной задачи | Целевая функция двойственной задачи | ||||||
10,66667 | 4 | 24 |
Лабораторная работа № 2 (Решение задачи ЛП средствами табличного процессора Excel)
Для заданной содержательной постановки задачи ЛП выполнить следующие действия:
Осуществить математическую запись задачи ЛП;
Решить задачу с использование надстройки Excel «Поиск решения»;