Для заданной математической постановки задачи НП (целевой функции f(x) и ограничений - равенств) выполнить следующие действия:
Найти все условные экстремумы функций методом множителей Лагранжа и выбрать среди них глобальный минимум (максимум);
Проверить результаты решения в табличном процессоре Excel;
(1)Метод множителей Лагранжа
Необходимо перевести условие к виду
Составим вспомогательную функцию Лагранжа:
Для данной задачи получим:
(2)Дифференцируем данную функцию по х1, х2, x3,
и , получим систему уравнений: (3)Как известно, для того, чтобы найти экстремум функции многих переменных (если он вообще существует) необходимо приравнять к нулю все его частные производные и решить полученную систему уравнений.
Решив это уравнение, получаем:
х1=2,25, х2=-1,25, x3= 1,5,
=-1,5 и =-3, F=12Точка экстремума заданной функции f(x) - (х1, х2, x3), является точкой глобального минимума при заданных ограничениях функции.
Решение в табличном процессоре Excel. Проверим результаты решения в табличном процессоре Excel.
Решение задачи с помощью процессора Excel дало следующие результаты:
Таблица 13
х1 | х2 | x3 | |
2,25 | -1,25 | 1,50 | |
Целевая функция | 12,00 | ||
Ограничения | 4,00 | = | 4 |
6,00 | = | 6 |
Решения задачи обеими методами дали одинаковый результат.
Задача
Имеются четыре предприятия, между которыми необходимо распределить 100 тыс. усл.ед. средств. Значения прироста выпуска продукции на предприятиях в зависимости от выделенных средств X представлены в таблице. Составить оптимальный план распределения средств, позволяющий максимизировать общий прирост выпуска продукции.
Таблица 14
X | g1 | g2 | g3 | g4 |
0 | 0 | 0 | 0 | 0 |
20 | 14 | 17 | 22 | 20 |
40 | 26 | 20 | 21 | 33 |
60 | 35 | 32 | 37 | 46 |
80 | 52 | 61 | 67 | 30 |
100 | 61 | 72 | 58 | 42 |
Решение
Этап I. Условная оптимизация.
Шаг 1. k = 4. Предполагаем, что все средства 100 ден.ед. переданы на инвестирование четвертого предприятия. В этом случае максимальная прибыль составит F4(C4)= 46, данные представлены в таблице 15.
Таблица 15.
C4 | x4 | F4(C4) | X* | |||||
0 | 20 | 40 | 60 | 80 | 100 | |||
0 | 0 | - | - | - | - | - | 0 | 0 |
20 | - | 20 | - | - | - | - | 20 | 20 |
40 | - | - | 33 | - | - | - | 33 | 40 |
60 | - | - | - | 46 | - | - | 46 | 60 |
80 | - | - | - | - | 30 | - | 30 | 80 |
100 | - | - | - | - | - | 42 | 42 | 100 |
Шаг 2. k = 3. Определяем оптимальную стратегию инвестирования в третье и четвертое предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:
.На его основании рассчитываются данные таблицы 16
Таблица 16.
C3 | X3 | F3(C3) | X* | |||||
0 | 20 | 40 | 60 | 80 | 100 | |||
0 | 0+0 | - | - | - | - | - | 0 | 0 |
20 | 0+20 | 22+0 | - | - | - | - | 22 | 20 |
40 | 0+33 | 22+20 | 21+0 | - | - | - | 42 | 20 |
60 | 0+46 | 22+33 | 21+20 | 37+0 | - | - | 55 | 20 |
80 | 0+30 | 22+46 | 21+33 | 37+20 | 67+0 | - | 68 | 20 |
100 | 0+42 | 22+30 | 21+46 | 37+33 | 67+20 | 58+0 | 87 | 20 |
Шаг 3. k = 2. Определяем оптимальную стратегию инвестирования во второе и третье предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:
.На его основании рассчитываются данные таблицы 3.
Таблица 17.
C2 | X2 | F2(C2) | X* | |||||
0 | 20 | 40 | 60 | 80 | 100 | |||
0 | 0+0 | - | - | - | - | - | 0 | 0 |
20 | 0+22 | 17+0 | - | - | - | - | 22 | 0 |
40 | 0+42 | 17+22 | 20+0 | - | - | - | 42 | 0 |
60 | 0+55 | 17+42 | 20+22 | 32+0 | - | - | 59 | 20 |
80 | 0+68 | 17+55 | 20+42 | 32+22 | 61+0 | - | 72 | 20 |
100 | 0+87 | 17+68 | 20+55 | 32+42 | 61+22 | 72+0 | 87 | 0 |
Шаг 4. k = 1. Определяем оптимальную стратегию инвестирования в первое и остальные предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:
.На его основе находятся данные таблицы 4.
Таблица 18.
C1 | X1 | F1(C1) | X* | |||||
0 | 20 | 40 | 60 | 80 | 100 | |||
0 | 0+0 | - | - | - | - | - | 0 | 0 |
20 | 0+48 | 14+0 | - | - | - | - | 22 | 0 |
40 | 0+93 | 14+48 | 26+0 | - | - | - | 42 | 0 |
60 | 0+135 | 14+93 | 26+48 | 35+0 | - | - | 59 | 0 |
80 | 0+149 | 14+135 | 26+93 | 35+48 | 52+0 | - | 72 | 0 |
100 | 0+160 | 14+149 | 26+135 | 35+93 | 52+48 | 61+0 | 87 | 0 |
По данным последней таблицы максимальных доход с четырех предприятий составил 87 д.ед. При этом первое и второе предприятия не принесут никакого дохода, в них нецелесообразно вкладывать инвестиции. В 3-е предприятие нужно вложить 80 д.ед. В 4-е предприятие нужно вложить 20 д.ед. В итоге останется 20-Получается, что оптимальный план Х*(0;0;80;20)
Задача
В предложенной из начального пункта (1) в конечный пункт (11). Стоимость проезда между отдельными пунктами транспортной сети придумать самостоятельно и транспортной сети имеется несколько маршрутов по проезду представить в соответствующей таблице (T(i,j)). Необходимо определить оптимальный маршрут проезда из пункта 1 в пункт 11 с минимальными транспортными расходами.
ji | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | - | 10 | 12 | 8 | 20 | - | - | - | - | - | - |
2 | - | - | - | - | - | 15 | 11 | - | - | - | - |
3 | - | - | - | - | - | 6 | 9 | - | - | - | - |
4 | - | - | - | - | - | 7 | 10 | - | - | - | - |
5 | - | - | - | - | - | 13 | 8 | - | - | - | - |
6 | - | - | - | - | - | - | - | 12 | 14 | 18 | - |
7 | - | - | - | - | - | - | - | 13 | 15 | 16 | - |
8 | - | - | - | - | - | - | - | - | - | - | 8 |
9 | - | - | - | - | - | - | - | - | - | - | 10 |
10 | - | - | - | - | - | - | - | - | - | - | 10 |
11 | - | - | - | - | - | - | - | - | - | - | - |
Решение
Этап I. Условная оптимизация.
Шаг 1. k = 1. F1(S) = ts10.
Таблица 18.
S | J=11 | F(S) | J* |
8 | 8 | 8 | 11 |
9 | 10 | 10 | 11 |
10 | 10 | 10 | 11 |
Шаг 2. k = 2. Функциональное уравнение на данном шаге принимает вид:
.Результаты расчета по приведенной формуле приведены в таблице:
Таблица 19.
S | J=8 | J=9 | J=10 | F(S) | J* |
6 | 12+8 | 14+10 | 18+10 | 20 | 8 |
7 | 13+8 | 15+10 | 16+10 | 21 | 8 |
Шаг 3. k = 3. Функциональное уравнение на данном шаге принимает вид: