Результаты расчета по приведенной формуле приведены в таблице:
Таблица 20.
S | J=6 | J=7 | F(S) | J* |
2 | 15+20 | 11+21 | 32 | 7 |
3 | 6+20 | 9+11 | 26 | 6 |
4 | 7+20 | 10+21 | 27 | 6 |
5 | 13+20 | 8+21 | 29 | 7 |
Шаг 4. k = 4. Функциональное уравнение на данном шаге принимает вид:
.Результаты расчета по приведенной формуле приведены в таблице:
Таблица 21.
S | J=2 | J=3 | J=4 | J=5 | F(S) | J* |
1 | 10+32 | 12+26 | 8+27 | 20+29 | 35 | 4 |
Этап II. Безусловная оптимизация.
На этапе условной оптимизации получено, что минимальные затраты на проезд из пункта 1 в пункт 11 составляют F4(1) = 35, что достигается следующим движением по магистралям. Из пункта 1 следует направиться в пункт 4, затем из него в пункт 6, затем в пункт 8 и из него в пункт 11. Таким образом, оптимальный маршрут будет J*(1;4;6;8;11)
В курсовой работе были рассмотрены решения задач нелинейного программирования, линейного программирования, динамического программирования.
Для решения задачи линейного программирования были использованы следующие методы:
1.Графический метод;
2.Симплексный метод;
3.Постановка двойственной задачи;
4.Решение задачи в предложении целочисленности переменных;
Для решения задачи нелинейного программирования были использованы следующие методы:
1.Метод множителей Лагранжа
Для решения задачи динамического программирования были использованы следующие методы:
Метод об оптимальном распределении инвестиций;
Метод выбора стратегии обновления оборудования;
Метод выбора оптимального пути в транспортной сети.
1.Динамическое программирование: Рек к выполнению лаб. и практ.работ / Сост.: Шипилов С.А: НФИ КемГУ.- 2-е изд.перераб.- Новокузнецк. 2002.-19 с.
2.Динамическое программирование. Шипилов С.А.
3.Методы условной оптимизации: Рек. к выполнению лаб. и практ.работ / Сост.: Шипилов С.А: НФИ КемГУ.- 2-е изд.перераб.- Новокузнецк. 2002.-48 с.