Смекни!
smekni.com

Задачи математического программирования (стр. 6 из 6)

.

Результаты расчета по приведенной формуле приведены в таблице:

Таблица 20.

S J=6 J=7 F(S) J*
2 15+20 11+21 32 7
3 6+20 9+11 26 6
4 7+20 10+21 27 6
5 13+20 8+21 29 7

Шаг 4. k = 4. Функциональное уравнение на данном шаге принимает вид:

.

Результаты расчета по приведенной формуле приведены в таблице:

Таблица 21.

S J=2 J=3 J=4 J=5 F(S) J*
1 10+32 12+26 8+27 20+29 35 4

Этап II. Безусловная оптимизация.

На этапе условной оптимизации получено, что минимальные затраты на проезд из пункта 1 в пункт 11 составляют F4(1) = 35, что достигается следующим движением по магистралям. Из пункта 1 следует направиться в пункт 4, затем из него в пункт 6, затем в пункт 8 и из него в пункт 11. Таким образом, оптимальный маршрут будет J*(1;4;6;8;11)


Заключение

В курсовой работе были рассмотрены решения задач нелинейного программирования, линейного программирования, динамического программирования.

Для решения задачи линейного программирования были использованы следующие методы:

1.Графический метод;

2.Симплексный метод;

3.Постановка двойственной задачи;

4.Решение задачи в предложении целочисленности переменных;

Для решения задачи нелинейного программирования были использованы следующие методы:

1.Метод множителей Лагранжа

Для решения задачи динамического программирования были использованы следующие методы:

Метод об оптимальном распределении инвестиций;

Метод выбора стратегии обновления оборудования;

Метод выбора оптимального пути в транспортной сети.


Список литературы

1.Динамическое программирование: Рек к выполнению лаб. и практ.работ / Сост.: Шипилов С.А: НФИ КемГУ.- 2-е изд.перераб.- Новокузнецк. 2002.-19 с.

2.Динамическое программирование. Шипилов С.А.

3.Методы условной оптимизации: Рек. к выполнению лаб. и практ.работ / Сост.: Шипилов С.А: НФИ КемГУ.- 2-е изд.перераб.- Новокузнецк. 2002.-48 с.