Смекни!
smekni.com

Записать задачу двойственную к данной, решить одну из пары задач и отыскать оптимальное решение второй (стр. 1 из 3)

Министерствообразования и науки Украины

Днепропетровский Национальный Университет

Факультет электроники, телекоммуникаций и компьютерных систем

Кафедра АСОИ

Расчётная задача №4

«Исследование операций»

г. Днепропетровск

2007г.


Задача

Записать задачу двойственную к данной, решить одну из пары задач и отыскать оптимальное решение второй

Прямая задача имеет вид:


Общая постановка двойственной задачи

Двойственная задача – это вспомогательная задача линейного программирования, она формулируется из прямой задачи.

Идея метода основана на связи между решениями прямой и двойственной задачи.

Двойственная задача формируется непосредственно из условий прямой задачи за следующими правилами:

Если прямая задача является задачей максимизации, то двойственная будет задачей минимизации;

Коэффициенты целевой функции прямой задачи С1, С2, ….,Сn становятся свободными членами ограничений двойственной задачи;

Свободные члены ограничений прямой задачи b1, b2, ….,bn становятся коэффициентами целевой функции двойственной задачи;

Матрицу ограничений двойственной задачи получают транспонированием матрицы ограничений прямой задачи;

Если прямая задача является задачей максимизации, то во всех неравенствах двойственной задачи будут стоять знаки ≥, и знаки ≤, если прямая задача является задачей минимизации.

Число ограничений прямой задачи равно числу переменных двойственной задачи.

Прямая задача в канонической форме

Двойственная к ней задача будет иметь вид

Двойственная задача решается симплекс-методом до достижения оптимального решения.

Решение прямой задачи

Все ограничения прямой задачи - это равенства с неотрицательными правыми частями, когда все переменные неотрицательны.

Приведем прямую задачу к стандартному виду:

Подставим значение

в целевую функцию:

Таким образом, прямая задача в стандартной форме имеет следующий вид:

Строим симплекс таблицу:

Итерация №1

Базис
Решение Оценка
0 0
0
5 -2 1 0 0 0 4 -
-1 2 0 1 0 0 4 2
1 1 0 0 -1 1 4 4

- ведущий столбец

- ведущая строка

Итерация №2

Базис
Решение Оценка
0 0
0
4 0 1 1 0 0 8 2
1 0
0 0 2 -
0 0
-1 1 2

- ведущий столбец

- ведущая строка

Итерация №3

Базис
Решение Оценка
0 0 0
0 0 1
0 1 0
-
1 0 0
-

- ведущий столбец