Попытка менее очевидного приложения возникла в стереохимии — науке о пространственном строении молекул. Речь пойдет о циклических молекулах, состоящих из шести атомов. Типичными примерами могут служить молекулы бензола или циклогексана. Бензольное кольцо, в котором, как известно, чередуются атомы водорода и углерода, обычно изображают так, как показано на рис. 15. Экспериментально установлено, что в молекулах бензола не только расстояния между атомами, но и углы между связями, выходящими из одного атома, всегда имеют одно и то же численное значение. Поэтому в качестве модели бензольного кольца можно принять пространственный шестиугольник, дополненный его короткими диагоналями (то есть диагоналями, соединяющими вершины, идущие через одну). Схематически эта модель изображена на рис. 14 в виде плоской фигуры, где буквами α, β и γ обозначены длины соответствующих отрезков. В этой модели следует считать все участвующие в ней отрезки идеально жесткими стержнями, шарнирно соединенными между собой в вершинах шестиугольника. Наша модель имеет 6 вершин, 12 отрезков-стержней и 8 треугольников, ограниченных отрезками-стержнями — ровно столько же, сколько вершин, ребер и граней имеет октаэдр. Заменив мысленно каждый из восьми треугольников, ограниченных отрезками-стержнями, плоским треугольником, получим, что наша модель бензольного кольца превратилась в октаэдр, грани которого имеют заранее предписанные размеры, а двугранные углы произвольны. (Схематически такой октаэдр изображен на рис. 14.) Поскольку грани достроены лишь мысленно, то ясно, что невыпуклость октаэдра или наличие самопересечений не влияют на наши рассуждения.
Теперь мы подошли к самой сути: существует ли циклическая молекула, состоящая из шести атомов, такая, что соответствующий ей октаэдр является изгибаемым? Если бы такая молекула существовала, то она тоже должна была бы допускать непрерывные изменения своей пространственной формы. Естественно ожидать, что при таком изменении формы молекулы менялись бы физические и химические свойства вещества, например объем или коэффициент преломления. Это было бы уже что-то новое в гидравлике или оптике. Вот бы научиться управлять такими изменениями... Но здесь мы вынуждены прервать полет фантазии и сообщить, что подобного рода молекулы, непрерывно (то есть без скачков) изменяющие свою форму в пространстве, пока не обнаружены.
Заканчивая обсуждение приложений, укажем, что задачи о необычной (то есть интуитивно неочевидной) подвижности многогранных поверхностей или стержневых систем периодически возникают в разных разделах науки и техники. Достаточно напомнить, что шарнирные механизмы изучались П.Л.Чебышевым более 100 лет назад, а перспективным источником новых вопросов представляется теория фуллеренов — недавно открытой третьей стабильной формы углерода.
6 ПОСТРОЕНИЕ МОДЕЛИ
В 1897 году Р. Брикар описал все изгибаемые октаэдры. Из теоремы Коши вытекает, что ни один из них не может быть выпуклым. Согласно установившейся традиции, изгибаемые октаэдры, называемые также октаэдрами Брикара, классифицируют относя каждый из них к одному из трех типов. Нам потребуется октаэдр Брикара лишь одного типа. Его построение будем объяснять в виде рекомендаций по склеиванию модели из картона.
Рис.16 рис.17
Нарисуем на картоне фигуру, изображенную на рис. 16 и состоящую из шести треугольников. Буквы a, b, c и dобозначают длины соответствующих сторон. Хорошо подходят значения a = 12, b = 10, c =5 и d = 11. Вырежем нарисованную фигуру по сплошным линиям и согнем по штриховым. Два левых треугольника, имеющие стороны длины c отогнем из плоскости рисунка на себя и склеим между собой вдоль стороны длины c. Два правых треугольника со сторонами длины c отогнем из плоскости рисунка от себя и приклеим их друг к другу вдоль стороны длины c. В результате получится невыпуклая незамкнутая многогранная поверхность P, изображенная на рис. 17. Сплошными линиями на нем изображены видимые ребра многогранной поверхности P, штриховыми — ребра, заслоненные гранями поверхности P. Ребра AE, ED, DFи AFсоставляют границу P, к каждому из них прилегает лишь одна грань поверхности P.
Также можно легко сконструировать реберную модель октаэдра Брикара из тонких пластиковых трубочек для питья, нанизав их соответствующим образом на нитки
7 СВОЙСТВА ОКРАЭДРА БРИКАРА
Основные свойства
Многогранная поверхность называется октаэдром Брикара, если как и обычный октаэдр, она имеет 6 вершин (A, B, C, D, E и F), 12 ребер (AB, AD, AE, AF, BC, BE, BF, CD, CE, CF,DE и DF) и 8 граней (ABE, ABF, BCE, BCF, CDE, CDF,ADE и ADF). Вместе с тем октаэдр Брикара является невыпуклым, изгибаемым и имеет самопересечения.
Лемма 1. Пусть в пространстве дан четырёхугольник ABCDс равными противоположными сторонами AB = CD, AD=BC. Тогда у этого четырёхугольника есть ось симметрии, проходящая через середины диагоналей AC и BD, а в частном случае, когда четырёхугольник является параллелограммом, ось симметрии проходит через точку пересечения диагоналей перпендикулярно плоскости параллелограмма.
Рис.18
Эта лемма позволяет нам описать изгибаемый октаэдр Брикара первого типа. Рассмотрим четырёхзвенный механизм ABCD(т. е. четыре стержня, соединённые шарнирами и имеющие возможность вращаться вокруг них) и удовлетворяющий условиям леммы 1. Пусть l — его ось симметрии. Пусть N — произвольная точка пространства, отличная от A, B, C, Dи не лежащая на оси l (рис. 18, а и б изображают два разных вида четырёхугольника ABCD, дающих четырёхгранный угол NABCDбез самопересечений и с самопересечениями, соответственно). Соединим N с вершинами четырёхзвенника ABCDи полученные «проволочные» треугольники NAB, NBC, NCD, NDAзаклеим плоскими треугольниками (эта операция образно называется «обшивкой каркаса гранями»). Получится четырёхгранный угол с известными длинами рёбер. Этот четырёхгранный угол при фиксированных длинах рёбер может изгибаться, причём его нетривиальные изгибания определяются изменяющимся значением одного параметра — угла a = ZABC. Действительно, угол a определяет положение треугольника ABCна плоскости p, а знание расстояний от трёх точек A, B, C до N определяет положение N однозначно (на самом деле точка N может иметь два положения, симметричных относительно плоскости p, но мы рассматриваем только непрерывные изменения исходного положения точки N), а знание положения точек A, B, N и расстояний от них до Dоднозначно определяет непрерывные изменения положения точки D.
Изгибаемость
Почему октаэдр Брикара изгибаем? Половинка октаэдра, очевидно, изгибается. Вторая половинка получается из первой поворотом вокруг оси, и, следовательно, ее деформация в точности повторяет деформацию первой половинки. Значит, и весь октаэдр Брикара изгибаем.
Рис.19
Очевидно, многогранная поверхность P является изгибаемой: если треугольник BCE фиксировать в пространстве, то точку Fможно двигать так, как показано стрелками на рис. 19. При этом положение точек A и Dв пространстве также будет меняться,но, что особенно важно, расстояние между точками A и Dбудет оставаться постоянным.
Чтобы убедиться в этом, рассмотрим двугранный угол S, одной гранью которого служит полуплоскость s1, проходящая через точку B и ограниченная прямой EF, проходящей через точки E и F, а другой гранью — полуплоскость s2, проходящая через точку C и ограниченная прямой EF. Повернем полуплоскость s1 вокруг прямой EF так, чтобы новая полуплоскость t1 проходила через точку A. В соответствии с рис. 18 для этого надо повернуть s1"на себя" на величину двугранного угла тетраэдра ABEFпри ребре EF. Аналогично повернем полуплоскость s2вокруг прямой EF так, чтобы новая полуплоскость t2проходила через точку D. Следуя рис. 19, для этого надо повернуть s2"от себя" на величину двугранного угла тетраэдра CDEF при ребре EF. Однако при любом положении точки F тетраэдры ABEFи CDEFимеют соответственно равные стороны. Поэтому тетраэдры ABEF и CDEFравны, в частности равны между собой двугранные углы этих тетраэдров при ребре EF. Значит, двугранный угол T, образованный полуплоскостями t1 и t2, равен двугранному углу S. Таким образом, мы получаем, что в тетраэдрах BCEF и ADEF пять сторон попарно равны между собой (BE = AF, BF= AE, CF= DE, CE= DFи EF-общая сторона) и, кроме того, равны между собой двугранные углы T и S, противолежащие шестой стороне (то есть BC и ADсоответственно). Следовательно, тетраэдры BCEF и ADEFравны между собой, а значит, AD = BC = dдля любого положения вершины F, что и утверждалось выше.
Рис.20
Поскольку длина отрезка ADпостоянна при всевозможных положениях вершины F, то к многогранной поверхности P можно приклеить два картонных треугольника ADEи ADF, причем получившаяся при этом поверхность Qбудет по-прежнему изгибаемой. Это приклеивание, конечно, не может быть осуществлено реально: например, грани ADEи BCE при этом пересекутся по линии, не являющейся ребром многогранной поверхности Q; при изгибании поверхности Qэта линия будет менять свое положение на каждой из граней ADEи BCE, что не поддается изображению на картонной модели.