XkÎ(l1, m1) (k = ni-1+1, …, ni).
Соотношение xni<mi<x0 показывает, что mi, а из того, что mi-1£li< x0, ясно, что и li ®x0.
Но liи miвходят в F, так что
lim y(li) = limy(mi) = y( x0).
Ввиду того, что значения линейной функции в каком-нибудь интервале лежат между ее значениями на концах этого интервала, ясно, что и limy(xn)=y(x0).
Итак, непрерывность функции y(x) доказана.
Из самого ее построения видно, что она совпадает с j(x) на множестве F.
Наконец по известной теореме Вейерштрасса, среди значений непрерывной на сегменте функции |y(x)| есть наибольшее – max |y(x)|. Легко видеть, что этот максимум достигается именно в точке, принадлежащей множеству F, ибо на дополнительных интервалах функция y(x) линейна. Поэтому max |y(x)| = max |j(x)|.
Лемма доказана полностью.
Теорема 2 (Э. Борель). Пусть на сегменте [a, b] задана измеримая и почти везде конечная функция f(x). Каковы бы ни были числа s >0 и e >0 существует непрерывная на [a, b] функция y(x), для которой
mE(|f-y| ³s) <e
Если при этом |f(x)| £K, то можно и y(x) выбрать так, что |y(x)| £K.
Д о к а з а т е л ь с т в о. Предположим сначала, что |f(x)| £K, т.е. что функция f(x) ограничена.
Фиксируя произвольные s >0 и e >0, найдем столь большое натуральное m, что K/m<s, и построим множества
(i = 1 – m, 2 – m, …, m – 1)Эти множества измеримы, попарно не пересекаются и
Построим для каждого i замкнутое множество FiÌEi с мерой
и положим .Ясно, что
, откуда m[a, b] – mF<e.Зададим теперь на множестве F функцию j(x), полагая
при xÎFi (i = 1 – m, …, m).В силу леммы 1 эта функция непрерывна на множестве F, |j(x)| £K и, наконец, при xÎF будет |f(x) - j(x)| < s.
Остается применить лемму 2. Это приводит к непрерывной функции y(x), совпадающей на множестве F с функцией j(x),причем |j(x)|³K. Поскольку E ( | f - y | ³ s ) Ì [a , b] – F , ясно, что функция y(x) требуемая.
Итак, для ограниченной функции теорема доказана.
Допустим теперь, что f (x) не ограничена. Тогда, пользуясь теоремой 1, можно построить такую ограниченную функцию g(x), что mE (f¹g) < e/2.
Применяя уже доказанную часть теоремы к функции g(x), мы найдем такую непрерывную функцию y(x), что
E (|f-y| ³s) Ì E (f¹g) + E (|g-y| ³s),
Так что функция y(x) решает задачу.
Следствие. Для всякой измеримой и почти везде конечной функции f(x), заданной на сегменте [a, b], существует последовательность непрерывных функций yn(x), сходящаяся по мере к функции f(x).
s1>s2>s3>…, sn®0,
e1>e2>e3>…, en®0,
построим для каждого n такую непрерывную функцию yn(x), что
mE(|f-yn|³sn)< en
откуда и следует наше утверждение.
Применив к последовательности {yn(x)} теорему Ф. Рисса мы приходим к последовательности непрерывных функций {ynk(x)}, которая сходится к функции f(x) почти везде.
Иначе говоря установлена
Теорема 3 (М.Фреше). Для всякой измеримой и почти везде конечной функции f(x), заданной на сегменте [a, b], существует последовательность непрерывных функций, сходящаяся к f(x) почти везде.
С помощью этой теоремы легко устанавливается весьма замечательная и важная
Теорема 4 (Н. Н. Лузин). Пусть f(x) измеримая и почти везде конечная функция, заданная на [a, b]. Каково бы ни было d > 0, существует такая непрерывна функция j(x), что
mE(f¹j) < d
Если, в частности, |f(x)| £K, то и |j(x)| £K.