Смекни!
smekni.com

Имитационное моделирование системы массового обслуживания (стр. 2 из 5)

1.3 Финальные вероятности и граф состояний СМО

При достаточно большом времени протекания процессов в системе (при

) могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов м. перейти в любое другое состояние, то финальные вероятности существуют, т.е.


Смысл финальных вероятностей состоит в том, что они равны среднему относительному времени нахождения системы в данном состоянии.

Т.к. в стационарном состоянии производные по времени равны нулю, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания нулю их правых частей.

Графы состояний, используемые в моделях систем массового обслуживания, называются схемой гибели и размножения. Такое название обусловлено тем, что эта схема используется в биологических задачах, связанных с изучением численности популяции. Его особенность состоит в том, что все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим (рис 2).

Рис. 2. Граф состояний в моделях СМО

Предположим, что все потоки, переводящие систему из одного состояния в другое, простейшие. По графу, представленному на рис. 2, составим уравнения для финальных вероятностей системы. Они имеют вид:



Получается система из (n+1) уравнения, которая решается методом исключения. Этот метод заключается в том, что последовательно все вероятности системы выражаются через вероятность

.

,

,

.

Подставляя эти выражения в последнее уравнение системы, находим

, затем находим остальные вероятности состояний СМО.

1.4 Показатели эффективности СМО

Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются:

– абсолютная пропускная способность системы (А), т.е. среднее число заявок, обслуживаемых в единицу времени;

– относительная пропускная способность (Q), т.е. средняя доля поступивших заявок, обслуживаемых системой;

– вероятность отказа (

), т.е. вероятность того, что заявка покинет СМО не обслуженной;

– среднее число занятых каналов (k);

– среднее число заявок в СМО (

);

– среднее время пребывания заявки в системе (

);

– среднее число заявок в очереди (

) – длина очереди;

– среднее число заявок в системе (

);

– среднее время пребывания заявки в очереди (

);

– среднее время пребывания заявки в системе (

)

– степень загрузки канала (

), т.е. вероятность того, что канал занят;

– среднее число заявок, обслуживаемых в единицу времени;

– среднее время ожидания обслуживания;

– вероятность того, что число заявок в очереди превысит определенное значение и т.п.

Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания, среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (очереди), деленному на интенсивность потока заявок, т.е.

(1.4.1)

(1.4.2)

Формулы (1.4.1) и (1.4.2) называются формулами Литтла. Они вытекают из того, что в предельном стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее, т.е. оба потока заявок имеют одну и ту же интенсивность

.

Формулы для вычисления показателей эффективности приведены в таб. 1.


Таблица 1.

Показатели Одноканальная СМО сограниченной очередью Многоканальная СМО сограниченной очередью
Финальныевероятности
,
Вероятностьотказа
Абсолютная пропускнаяспособность
Относительная пропускнаяспособность
Среднее число заявок вочереди
Среднее число заявок подобслуживанием
Среднее число заявок в системе

1.5 Основные понятия имитационного моделирования

Основная цель имитационного моделирования заключается в воспроизведении поведения изучаемой системы на основе анализа наиболее существенных взаимосвязей ее элементов.

Компьютерное имитационное моделирование следует рассматривать как статический эксперимент.

Из теории функций случайных величин известно, что для моделирования случайной величины

с любой непрерывной и монотонно возрастающей функцией распределения
достаточно уметь моделировать случайную величину
, равномерно распределенную на отрезке
. Получив реализацию
случайной величины
, можно найти соответствующую ей реализацию
случайной величины
, так как они связаны равенством

(1.5.1)

Предположим, что в некоторой системе массового обслуживания время обслуживания одной заявки распределено по экспоненциальному закону с параметром

, где
– интенсивность потока обслуживания. Тогда функция распределения
времени обслуживания имеет вид