Так как ∟АґХґВґ = ∟ОВґХґ - ∟ОАґХґ = ∟ОХВ - ∟ОХА = ∟АХВ =
, то отсюда вытекает, что отрезок АґВґ из точки Хґ виден под углом и, стало быть, точка Хґ лежит на окружности S, построенной на отрезке АґВґ как на диаметре. Поскольку точка Х на окружности К была выбрана произвольно, то Кґ - образ окружности К при инверсии ц – расположен на окружности S. Пусть Y – произвольная точка окружности S и Z – точка на луче ОY такая, что ОZ = . Очевидно, что точка Z переводится инверсией ц в точку Y. Далее, из соотношенийОА
ОАґ = r2ОВ
ОВґ = r2ОZ
OY = r2и леммы 1 вытекает, что ∟AZB = ∟OZB - ∟OZA = ∟OB′Y - ∟OA′Y =∟A′YB′ =
.Следовательно, что точка Z лежит на окружности К. отсюда вытекает, что фигуры S и Кґ совпадают. Так как по построению концы диаметра окружности К – точки А, В – отличны от точки О, то окружность Кґ не проходит через точку О.
Построения , приведенные выше, дают возможность строить образ окружностей при инверсии с помощью циркуля и линейки. Рассмотрим этот вопрос более подробно.
а) Окружность не проходит через центр инверсии. В этом случае проводим из точки О луч, который пересекает окружность К по диаметру АВ, для точек А и В строим их образы Аґ и Вґ. окружность Кґ - образ окружности К относительно инверсии ц – есть окружность, построенная на отрезке АґВґ как на диаметре (рис. 6).
Рис. 6
б) Окружность К проходит через центр инверсии. В этом случае согласно теореме 3 образ К есть прямая Кґ. из точки О проводим луч ОА (рис 7), который пересекает К по диаметру ОА. Для точки А строим ее образ – точку Аґ. Прямая, проходящая через точку Аґ перпендикулярно лучу ОА, и есть искомая прямая Кґ
Построение прямой Кґ значительно упрощается в двух случаях:
1) если окружность К пересекает окружность инверсии в двух точках В и С, то прямая Кґ совпадает с прямой ВС (рис. 8);
2) если К касается окружности инверсии, то Кґ есть касательная к окружности инверсии в точке касания К с окружностью инверсии (рис. 9).
Рис. 7
Рис. 8
Рис. 9
Рассмотрим теперь вопрос о характере изменения углов между кривыми под действием инверсии ц. Как известно, углом между кривыми L1 и L2 в точке их пересечения называется наименьший из вертикальных углов между касательными к этим кривым в рассматриваемой точке. Можно доказать, что при инверсии углы между кривыми сохраняются. Ниже это предложение доказывается для окружностей и прямых.
Теорема 5. При инверсии ц угол между прямыми равен углу между их образами.
Доказательство. Здесь могут представиться 3 случая:
1) прямые l1 и l2 проходят через центр инверсии ц;
2) одна из прямых l1 и l2 проходит через центр инверсии;
3) ни l1 и l2 не проходят через центр инверсии.
В первом случае утверждение теоремы очевидно. Рассмотрим случаи 2) и 3). В случае 2) (рис. 10) будем считать для определенности, что прямая l1 проходит через центр инверсии - точку О. Тогда инверсия ц переводит прямую l1 саму в себя, т.е. образ прямой l1 совпадает с этой прямой. Прямая l2 не проходит через центр инверсии и потому переводится инверсией в некоторую окружность lґ2, проходящую через точку О. Касательная t к окружности lґ2 в точке О параллельно прямой l2.
Рис. 10
Относительно взаимного расположения прямых l1 и l2 могут представиться 2 возможности:
а) прямые l1 и l2 параллельны;
б) l1 и l2 пересекаются в некоторой точке А.
Если l1 и l2 параллельны, то угол между ними, очевидно, равен 0. Но прямая l1 проходит через точку О и параллельна l2 . Поэтому она необходимо будет совпадать с касательной t к окружности lґ2 в точке О. Отсюда следует, что угол между lґ1 и lґ2 равен 0 и, следовательно, утверждение теоремы в случае а) доказана.
Пусть теперь l1 и l2 не параллельны и А – точка их пересечения. Обозначим через б наименьший из вертикальных углов между l1 = lґ1 и прямой l2 или, что то же, прямой t. Точка А при инверсии переходит в некоторую точку Аґ, в которой прямая lґ1 пересекается с окружностью lґ2. Но прямая lґ1 или, что то же, прямая ОАґ составляет с касательной tґ в точке Аґ к окружности lґ2 такие же вертикальные углы, что и с касательной t. Отсюда немедленно следует, что угол между l1 и l2 в точке Аґ равен б.. случай 2) полностью доказан.
Рис. 11
Третий случай (рис. 11) доказывается аналогичными рассуждениями. Заметим только, что если прямые l1 и l2 параллельны, то соответствующие окружности lґ1 и lґ2 имеют в точке О общую касательную и составляют между собой нулевой угол. Отсюда угол между lґ1 и lґ2 равен углу между l1 и l2. Если же прямые l1 и l2 пересекаются, то, как видно из рис. 11, угол между окружностями lґ1 и lґ2 в точке О равен углу между прямыми l1 и l2, т. к. касательные t1 и t2 к этим окружностям в точке О параллельны прямым l1 и l2. Отсюда и вытекает утверждение теоремы.
Рассмотрим еще две теоремы без доказательства.
Теорема 6. Угол между окружностями равен углу между образами этих окружностей относительно инверсии.
Теорема 7. Угол между окружностью и прямой равен углу между образами этих фигур относительно инверсии.
1.3 Лемма об антипараллельных прямых
Сначала рассмотрим вспомогательное понятие.
Пусть некоторая прямая a пересекает обе стороны некоторого угла (k, l) (рис. 12). В пересечении с какой–либо из сторон угла, например k, эта прямая образует четыре угла, из которых только один лежит внутри треугольника, отсекаемого прямой от угла (k, l).
Рис. 12В дальнейшем, когда речь будет идти об угле между прямой и стороной угла, мы будем иметь в виду именно этот угол.
Пусть теперь две прямые (рис. 13) пересекают стороны угла, причем одна из них образует с одной из сторон угла такой же угол, какой вторая прямая образует с другой стороной угла (на рис. 13) ∟1 = ∟2.
Рис. 13
Легко понять, что когда и первая прямая образует со второй стороной угла такой же угол, какой образует вторая прямая с первой стороной угла ∟3 = ∟4.
Определение. Две прямые, пересекающие стороны некоторого угла, называются антипараллельными относительно этого угла, если одна из них образует с одной из его сторон такой же угол, какой образует другая прямая с другой его стороной.
Антипараллельными являются прямые a и b на рисунке 13, прямые с и d на рисунке 14, где с ┴ k и d ┴ l.
Антипараллельные прямые, вообще говоря, не параллельны. Исключение составляет только случай, когда обе прямые перпендикулярны к биссектрисе данного угла (рис. 15).
Рис. 14
Рис. 15
Теорема (лемма об антипараллельных прямых). Прямая, соединяющая две точки плоскости, и прямая, соединяющая две инверсные им точки, антипараллельны относительно угла с вершиной в центре инверсии и сторонами, проходящими через данные точки.
Доказательство. Пусть щ (О, R) базисная окружность, точки Аґ и Вґ (рис. 16) инверсны соответственно точкам А и В. Тогда ОА
ОАґ = ОВ ОВґ = R2, так что = . Кроме того, в треугольниках АОВ и ВґОАґ угол О общий. Следовательно, ∆АОВ подобен ∆ ВґОАґ и, значит, ∟ОВА = ∟ОА′В′.Таким образом, прямые АВ и А′В′ антипараллельны относительно угла АОВ, что и требовалось доказать.
Если (рис. 16) каким-либо образом построены две соответственные в инверсии точки А и А′, то доказанная лемма дает простой прием построения образа произвольной точки В (не лежащей на прямой ОА): соединить В с А и провести прямую А′В′ так, чтобы ∟ОА′В′ = ∟ОВА.
Рис. 16
1.4 Степень точки относительно окружности
Понятие степени точки относительно окружности играет существенную роль и является аналогом понятия расстояния от точки до прямой.
Степенью точки М относительно окружности К называется число
s = d2 – r2 ,
где d – расстояние точки М от центра О окружности К, а r – радиус этой окружности. Если точка М лежит внутри окружности К, то d < r, и потому степень точки М: s = d2 – r2 – отрицательна. Величины r – d и r + d суть отрезки диаметра PQ, на которые его разбивает точка М. Поэтому для любой хорды АМВ круга К (рис. 17) имеем s = - АМ
МВ.