Нас интересует только второе условие совокупности. Кстати, оно при
При переходе к исходным координатам получаем
Глава 2
Применение инверсии при решении задач и доказательстве теорем
2.1. Применение инверсии при решении задач на построение. Метод инверсии дает возможность решить ряд наиболее трудных конструктивных задач элементарной геометрии. При этом его комбинация с методом координат, что фактически происходит при попытке решать задачу на комплексной плоскости, дает наиболее точные вычисления местонахождения нужных фигур, что является явным плюсом метода по сравнению с довольно неточными построениями от руки. Недостатком же этого метода является его громоздкость, связанная с необходимостью выполнить большое число довольно объемных вычислений. Но надо сказать, что для компьютера это не является трудностью, и перед пользователем встает лишь проблема перевода алгоритма решения задачи на язык программирования.
Задачи на построение, решаемые методом инверсии, Александров [2] делил на три группы.
Первая группа. В задачах этого рода обратные кривые играют роль геометрических мест. Центр и степень инверсии в этом случае известны.
Задача 1. Даны точка К и две прямые АВ и ВС. Провести секущую KXY так, чтобы
○ Искомые точки X и Y инверсны друг другу при инверсии с центром в точке К и степенью с2. Точка Y есть пересечение прямой ВА с кривой, обратной ВС. Это будет окружность, проходящая через центр инверсии, то есть через точку К. Найдем ее уравнение.
Передвинем систему координат таким образом, что точка К является началом координат (это будет параллельный перенос на вектор ОК с формулой
Образ прямой ВС при инверсии будет
Вычислив корни первого уравнения, подставляем их во второе. Если подойдут, это решение. Таким образом, может быть 2, 1 или 0 решений.
Чтобы перевести координату Y в исходную систему координат, прибавляем к полученной координате настоящую координату К.
Теперь по двум точкам – Yи К – пишем уравнение искомой прямой:
Вторая группа. В задачах этой группы инвертируется некоторая часть искомой фигуры (отрезок, точка или окружность); при этом теория инверсии, иногда в соединении с другими методами, часто укажет такую зависимость начала инверсии от данных и искомых, которая позволяет решить задачу. Начало и степень инверсии даны или должны быть целесообразно выбраны. В выборе начала, степени, числа инверсий иногда встречаются затруднения.
Лучшим примером задач этого рода служит, по мнению Александрова, частный случай задачи Кастильона (Castillon), разобранный ниже.
Задача 2. В данную окружность вписать треугольник так, чтобы прямые, содержащие его стороны, проходили бы соответственно через данные три точки.
○ Когда все три точки лежат на данной окружности, то решение очевидно: достаточно просто соединить эти точки и получим искомый треугольник. Решение единственно, потому что треугольник своими вершинами определяется однозначно.
Если две из трех данных точек лежат на окружности и не коллинеарны с третьей, то решение также очевидно. Если третья точка лежит внутри окружности, то любая прямая, проходящая через нее пересекает окружность в двух точках. Было бы замечательно, если бы она пересекала окружность в одной из данных точек. Это можно устроить двумя способами, и решений тоже два.
Если третья точка лежит вне окружности, то есть ровно один случай, при котором задача не имеет решения – если обе проведенные прямые являются касательными. То есть может быть два, одно или ни одного решения.
Если только одна точка лежит на данной окружности, то решений также в лучшем случае два. Проведем прямую через точку на окружности и точку не на окружности. Получим одну сторону треугольника. Теперь проведем прямую через вторую точку не на окружности и точку пересечения полученной прямой, не совпадающей с данной, если она есть. Получим вторую сторону треугольника. Третья сторона получается автоматически.
Так можно проделать с каждой из двух точек не на окружности, и решений будет два, если в каком-то или в обоих случаях не получится, что первая или вторая проведенная прямая окажется касательной.
Рассмотрим случай, когда три данные точки не лежат на данной окружности.
Пусть ABC – искомый треугольник, стороны АВ, ВС и СА которого проходят через три заданные точки М1, М2 и М3 с координатами m1, m2 и m3 соответственно, и вписан он в окружность w с центром S(s)и радиусом r.
Поместим начало координат в центр окружности w при помощи параллельного переноса
Заметим, что положение точки А определяет весь треугольник, поскольку прямая Am1 в пересечении с окружностью дает точку В, затем прямая Bm2 в пересечении с окружностью дает точку С.
Выполним инверсию I1 с центром в точке М1 и степенью
Затем осуществим инверсию I2 с центром в точке М2 и степенью
Наконец, применим инверсию I с центром в точке S(0) и степенью
Таким образом, композиция инверсий
1) Пусть Σ – окружность или прямая, проходящая через точку А. Обозначим
Чтобы Σ перешла в прямую Σ’, необходимо, чтобы
Вывод: Σ’ – прямая Û
2) Теперь аналогично поработаем с Σ’ – прямой или окружностью, очевидно, проходящей через А. Как мы уже выяснили,