Смекни!
smekni.com

Интегралы. Функции переменных (стр. 2 из 2)

данный ряд сходится условно.

3. Найти область сходимости функционального ряда

, перепишем его в виде:

Член данного ряда представляет собой член степенного ряда, помноженный на член гармонического ряда.

Для расходящегося гармонического ряда выполняется однако основной признак сходимости (его член стремится к нулю), так что сходимость функционального ряда

определяется сходимостью степенного ряда:
, причем при любом x это будет знакопостоянный ряд.

Cтепенной же ряд сходится когда его член по модулю <1:


Решаем это модульное неравенство и находим область сходимости функционального ряда

:

Итак, область сходимости функционального ряда

: