Міністерство освіти і науки України
Національний технічний університет
“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”
Кафедра “Обчислювальної техніки та програмування”
Реферат з курсу “Численные методы”
Тема: “ИНТЕРПОЛИРОВАНИЕ И ПРИБЛИЖЕНИЕ ФУНКЦИЙ”
Перевірив:
Содержание
1. Разделенные разности
2. Интерполяционный многочлен Лагранжа
3. Интерполяционный многочлен Ньютона
4. Аппроксимация функций методом наименьших квадратов
Литература
1. Разделенные разности
Часто экспериментальные данные функциональной зависимости представляются таблицей, в которой шаг по независимой переменной не постоянен. Для работы с таким представлением функции конечные разности и конечно-разностные операторы не пригодны. В этом случае первостепенную роль играют разделенные разности.
Разделенную разность функции f(x) для некоторых двух точек
Для построения степенного многочлена, проходящего через заданные точки, необходимо иметь число точек на единицу больше, чем степень многочлена. Согласно определению разделенной разности число их для n точек равно числу сочетаний из n по 2. Это во много раз больше, чем необходимо для построения кривых, проходящих через n точек. Из опыта работы с конечными разностями видно, что разделенных разностей из всего множества достаточно выбрать всего n, но выбрать так, чтобы в их образование входили все (n+1) точек таблицы.
Вполне разумно вычислять разделенные разности только для соседних значений функции в таблице. В этом случае говорят об упорядоченных разделенных разностях. Аргументу табличной функции присваиваются индексы из чисел натурального ряда, начиная с нуля, в результате чего обозначения разделенных разностей для i-той строки таблицы будут
Повторная разность от разделенной разности есть разделенная разность второго порядка:
В общем случае разделенная разность n-го порядка имеет вид:
2. Интерполяционный многочлен Лагранжа
Произведения из скобочных сомножителей в знаменателе каждого слагаемого напоминают своим видом некий степенной многочлен от переменной
Удаляя тот или иной сомножитель из
Если умножить
3. Интерполяционный многочлен Ньютона
Интерполяционный многочлен в форме многочлена Лагранжа не удобен в случаях, когда необходимо добавлять экспериментальные данные в таблицу с целью повышения точности интерполяции. При этом необходимо проводить все вычисления заново.
Если задачу поставить так, что добавление лишней точки требовало бы лишь добавки некоторого многочлена степени (n+1) к многочлену Лагранжа n-й степени, то эту добавку можно искать, выполнив в общем виде преобразование разности двух многочленов Лагранжа: степени (n+1) и n. Несложные преобразования приводят к следующему соотношению для добавочного многочлена степени (n+1):
где
Если считать разделенную разность нулевого порядка равной значению функции
Поступая аналогичным образом и находя последовательно
Надо отметить, что дополнительную точку в таблицу необходимо записывать в самую нижнюю строку таблицы, чтобы не нарушить уже имеющегося упорядочения разностей и ускорить вычисление новых.
И, наконец, надо отметить, что и многочлен Лагранжа, и многочлен Ньютона удобны для вычислений, но после раскрытия скобок и приведения подобных дают один и тот же степенной многочлен.
4. Аппроксимация функций методом наименьших квадратов
Основным недостатком интерполяционных многочленов является наличие у них большого числа экстремумов и точек перегибов, что определяется суммированием в них многочленов
Если табличные значения функции можно интерпретировать как теоретическое значение плюс погрешность, то, задав некоторый критерий близости теоретической кривой к заданному множеству табличных точек, можно найти нужное число параметров этой кривой.
Наиболее популярным критерием близости является минимум среднего квадрата отклонения:
где
Если искомую зависимость желательно представить многочленом степени n, то (n+1) коэффициент в нем будут представлять неизвестные параметры. Подставив в сумму квадратов отклонений искомый многочлен, получим функционал, зависящий от этих параметров:
Чтобы функционал
Здесь