Смекни!
smekni.com

Интерполирование и приближение функций (стр. 1 из 2)

Міністерство освіти і науки України

Національний технічний університет

“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”

Кафедра “Обчислювальної техніки та програмування”

Реферат з курсу “Численные методы

Тема: “ИНТЕРПОЛИРОВАНИЕ И ПРИБЛИЖЕНИЕ ФУНКЦИЙ”

Виконав:

студент групи

Перевірив:

Харків


Содержание

1. Разделенные разности

2. Интерполяционный многочлен Лагранжа

3. Интерполяционный многочлен Ньютона

4. Аппроксимация функций методом наименьших квадратов

Литература


1. Разделенные разности

Часто экспериментальные данные функциональной зависимости представляются таблицей, в которой шаг по независимой переменной не постоянен. Для работы с таким представлением функции конечные разности и конечно-разностные операторы не пригодны. В этом случае первостепенную роль играют разделенные разности.

Разделенную разность функции f(x) для некоторых двух точек

и
определяют следующей дробью:

Для построения степенного многочлена, проходящего через заданные точки, необходимо иметь число точек на единицу больше, чем степень многочлена. Согласно определению разделенной разности число их для n точек равно числу сочетаний из n по 2. Это во много раз больше, чем необходимо для построения кривых, проходящих через n точек. Из опыта работы с конечными разностями видно, что разделенных разностей из всего множества достаточно выбрать всего n, но выбрать так, чтобы в их образование входили все (n+1) точек таблицы.

Вполне разумно вычислять разделенные разности только для соседних значений функции в таблице. В этом случае говорят об упорядоченных разделенных разностях. Аргументу табличной функции присваиваются индексы из чисел натурального ряда, начиная с нуля, в результате чего обозначения разделенных разностей для i-той строки таблицы будут

.

Повторная разность от разделенной разности есть разделенная разность второго порядка:

В общем случае разделенная разность n-го порядка имеет вид:

2. Интерполяционный многочлен Лагранжа

Произведения из скобочных сомножителей в знаменателе каждого слагаемого напоминают своим видом некий степенной многочлен от переменной

, который своими корнями имеет значения
, исключая
. Многочлен от x с корнями в этих же точках, включая и
, будет иметь вид:

Удаляя тот или иной сомножитель из

, можно по желанию исключить ненужный нуль многочлена. Если взять i-тое слагаемое без
из выражения для разделенной разности n-го порядка и умножить его на
, в котором отсутствует сомножитель
, то многочлен степени n будет обладать следующими свойствами:

Если умножить

на
, то полученный многочлен степени n будет проходить через точку с координатами
и будет равен нулю во всех точках
. Сумма таких многочленов по всем
определяет интерполяционный многочлен Лагранжа степени n.

.

3. Интерполяционный многочлен Ньютона

Интерполяционный многочлен в форме многочлена Лагранжа не удобен в случаях, когда необходимо добавлять экспериментальные данные в таблицу с целью повышения точности интерполяции. При этом необходимо проводить все вычисления заново.

Если задачу поставить так, что добавление лишней точки требовало бы лишь добавки некоторого многочлена степени (n+1) к многочлену Лагранжа n-й степени, то эту добавку можно искать, выполнив в общем виде преобразование разности двух многочленов Лагранжа: степени (n+1) и n. Несложные преобразования приводят к следующему соотношению для добавочного многочлена степени (n+1):

,

где

– многочлен степени (n+1),

– разделенная разность (n+1)-го порядка.

Если считать разделенную разность нулевого порядка равной значению функции

в точке
, то


Поступая аналогичным образом и находя последовательно

, в конце концов, получим общее выражение для другой формы представления интерполяционного многочлена Лагранжа, которая в литературе называется интерполяционным многочленом Ньютона для неравных интервалов и записывается так:

Надо отметить, что дополнительную точку в таблицу необходимо записывать в самую нижнюю строку таблицы, чтобы не нарушить уже имеющегося упорядочения разностей и ускорить вычисление новых.

И, наконец, надо отметить, что и многочлен Лагранжа, и многочлен Ньютона удобны для вычислений, но после раскрытия скобок и приведения подобных дают один и тот же степенной многочлен.

4. Аппроксимация функций методом наименьших квадратов

Основным недостатком интерполяционных многочленов является наличие у них большого числа экстремумов и точек перегибов, что определяется суммированием в них многочленов

, n раз меняющих свой знак. Кроме того, исходные табличные значения функции заданы неточно по разным причинам, поэтому строить многочлены выше 4-5-й степени, зная, что из теоретических исследований функция в интервале таблицы совсем не такая, не имеет особого смысла.

Если табличные значения функции можно интерпретировать как теоретическое значение плюс погрешность, то, задав некоторый критерий близости теоретической кривой к заданному множеству табличных точек, можно найти нужное число параметров этой кривой.

Наиболее популярным критерием близости является минимум среднего квадрата отклонения:

,

где

– точка экспериментальных данных из таблицы,

– значение искомой зависимости в точке
.

Если искомую зависимость желательно представить многочленом степени n, то (n+1) коэффициент в нем будут представлять неизвестные параметры. Подставив в сумму квадратов отклонений искомый многочлен, получим функционал, зависящий от этих параметров:

Чтобы функционал

был минимален, необходимо все частные производные функционала по параметрам приравнять нулю и систему разрешить относительно неизвестных параметров
. Эти действия приводят к следующей системе линейных уравнений

Здесь

– постоянный коэффициент, равный сумме (j+k)-тых степеней всех значений аргументов. Для их ручного вычисления удобно к исходной таблице данных добавить еще
столбцов.
– числовые значения в правой части системы линейных алгебраических уравнений, для подсчета которых тоже