Смекни!
smekni.com

Иррациональные уравнения (стр. 1 из 10)

Курсовая работа

Иррациональные уравнения


Содержание:

Введение

1. Основные определения и теоремы

2. Стандартные иррациональные уравнения и методы их решения

2.1 Уравнения вида

2.2. Уравнения вида

2.3 Иррациональные уравнения, которые решаются введением новой переменной

2.4 Уравнения вида

,
,

3. Нестандартные методы решения иррациональных уравнений

3.1 Применение основных свойств функции

3.1.1 Использование области определения уравнения

3.1.2 Использование области значений функции

3.1.3 Использование монотонности функции

3.1.4 Использование ограниченности функции

3.2 Применение производной

3.2.1 Использование монотонности функции

3.2.2 Использование наибольшего и наименьшего значений функций

4. Смешанные иррациональные уравнения и методы их решения

4.1 Иррациональные уравнения, содержащие двойную иррациональность

4.2 Иррациональные показательные уравнения

4.3 Иррациональные логарифмические уравнения

Заключение

Литература


Введение

Тема моей курсовой работы − «иррациональные уравнения». Я выбрала её потому, что в учебном курсе, этому материалу посвящено мало часов, а в задачниках большое количество примеров посвящено именно этой теме.

Поэтому в изучении «иррациональных уравнений» я преследую цель - дать основные определение иррациональным уравнениям и теоремам. Определить какие бывают виды уравнений. Рассмотреть правила решения иррациональных уравнений.

Задачи моей работы – изучить научную и методическую литературу, подобрать и рассмотреть задачи для данной темы, включая олимпиадные.

В моей курсовой работе показаны решения иррациональных уравнений как стандартного метода, так и не стандартного метода решения. Я старалась как можно доступнее охватить проблемы этой темы. Конечно, всё нельзя учесть в курсовой работе, но я постараюсь ниже изложить основные моменты. Я хотела бы сделать данную работу вспомогательным пособием при изучении темы «Иррациональные уравнения».


1. Основные определения и теоремы

Определение 1. Уравнение – это два выражения, соединенные знаком равенства; в эти выражения входит одна или несколько переменных, называемых неизвестными.

Пример 1.

- является уравнением с одной неизвестной.

Пример 2.

- является уравнением с двумя неизвестными.

Определение 2. Равенство вида

называется уравнением с одной переменной
.

Пример 1.

- является уравнением с одной переменной х.

Далее рассматриваем уравнения с одной переменной.

Определение 3. Всякое значение переменной, при котором выражения

и
принимают равные числовые значения, называется корнем уравнения или его решением.

Пример 1. Уравнение

имеет два корня: -1 и 1.

Определение 4. Решить уравнение – значит, найти множество всех его решений или доказать, что их нет.

Пример 1. Уравнение

имеет единственный корень 4, так как при этом и только при этом значении переменной
обращается в верное равенство, таким образом, ответ записывается в следующем виде:

О т в е т: {4}.

Пример 2. Уравнение

не имеет действительных корней.

О т в е т:

.

Пример 3. Уравнение

имеет бесконечное множество решений, так как после тождественных преобразований получили равенство
. Т.е данное уравнение
есть тождественное равенство, верное для любого действительного значения
.

О т в е т:

.

Определение 5. Тождество (тождественное равенство) - это равенство двух выражений с переменными, верное при всех допустимых значениях входящих в него переменных. Тождествами считаются и верные числовые равенства, а также равенства, превращающиеся в верное числовое равенство для всех числовых значений букв, для которых эти выражения определены.

Пример 1. Равенство

, справедливо для всех числовых значений
и в, является тождественным.

Пример 2. Равенство 2=2 тождество.

Определение 6. Тождественное преобразование выражения – это замена выражения на тождественно равное ему выражение, т. е. равное для всех числовых значений входящих в него переменных.

К тождественным преобразованиям относятся, например, приведение подобных слагаемых; разложение на множители; приведение алгебраических дробей к общему знаменателю; разложение их на элементарные дроби и другие.

Определение 7. Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень.

Пример 1.

- иррациональное уравнение (переменная содержится под знаком радикала).

Пример 2.

иррациональное уравнение (переменная содержится под знаком возведения в дробную степень).

Определение 8. Областью определения уравнения (или областью допустимых значений переменной - ОДЗ)

называют множество всех тех значений переменной
, при которых и выражение
, и
имеют смысл.

Пример 1.

Выражение (
и
определены при всех
. Значит, ОДЗ:
.

Пример 2.

. Выражение
не определено при
, а выражение
не определено при
.

Значит, ОДЗ:

.

Пример 3.

. Корень четной степени имеет смысл лишь при неотрицательных значениях подкоренного выражения. Значит, одновременно должны выполняться условия:
т.е. ОДЗ:

Определение 9. Пусть даны уравнения:

(1),
(2).

Если каждый корень уравнения (1) является одновременно корнем уравнения (2), то уравнение (2) называется следствием уравнения (1). Следствие обозначается следующим образом:

Пример 1.

В процессе решения уравнения часто приходится применять такие преобразования, которые приводят к уравнению, являющемуся следствием исходного. Уравнению-следствию удовлетворяют все корни исходного уравнения, но, кроме них, уравнение-следствие может иметь и такие решение, которые не являются корнями исходного уравнения, так называемые, «посторонние» корни. Чтобы выявить и отсеять «посторонние» корни, обычно поступают так: все найденные корни уравнения-следствия проверяют подстановкой в исходное уравнение.