Смекни!
smekni.com

Использование моделирования в обучении решению задач в 5 классе (стр. 5 из 8)

Таким образом, использование модели при решении задач обеспечит качественный анализ задач, осознанный поиск их решения, обоснованный выбор арифметического действия, рациональный способ решения и предупредит многие ошибки в решении задач учащимися. Модель задачи может быть применена и для составления и решения обратных задач, для проведения исследования задачи. Модель помогает поставить условия, при которых задача имеет решение или не имеет решения; выяснить, как изменяется значение искомой величины в зависимости от изменения данных величин; помогает обобщить теоретические знания; развивает самостоятельность и вариативность мышления.


Глава 2. Методико-математические основы использования моделирования

2.1. Практический опыт использования моделей при решении задач на движение в 5 классе

В учебно-методический комплект (УМК), необходимый для обучения математике, включается:

- учебник как ведущий элемент УМК;

- дидактические материалы (задачник, рабочие тетради, карточки и т. д.);

- книга для учителя.

Автором был выбран учебник «Математика 5» Н. Я. Виленкина. Учебник содержит две главы, которые разбиты на параграфы по определенным темам.

В учебнике предложено большое количество задач на движение, но автором данной работы были подробно (составлены модели, проведен поиск решения задачи и выполнено решение) рассмотрены только те, которые находятся в теме «Десятичные дроби». Данная тема рассчитана на 38 часов:

Десятичная запись дробных чисел (2 ч);

Сравнение десятичных дробей (2 ч);

Сложение и вычитание десятичных дробей (5 ч);

Округление десятичных дробей (3 ч);

Контрольная работа (1 ч);

Умножение десятичных дробей на натуральные числа (4 ч);

Деление десятичных дробей на натуральные числа (5 ч);

Контрольная работа (1 ч);

Умножение десятичных дробей (5 ч);

Деление десятичных дробей (6 ч);

Среднее арифметическое (3 ч).

Задача 1: (№ 1142)

«Из двух пунктов, расстояние между которыми 7 км 500 м, одновременно в одном направлении вышел пешеход со скоростью 6 км/ч и выехал автобус. Определите скорость автобуса, если он догнал пешехода через 15 мин?»

- Читаем внимательно задачу.

- Давайте к этой задаче составим чертеж.

- Что нам уже известно? (Из двух пунктов одновременно в одном направлении вышел пешеход и выехал автобус)

- Отметим это на чертеже.

? км/ч 6 км/ч

А 7км 500 м В tвстр=15 мин

- Что еще известно? (Расстояние между пунктами 7 км 500 м; скорость пешехода 6 км/ч; автобус догнал пешехода через 15 мин)

- Отметим все данные на чертеже.

- Что нужно узнать в задаче? (Скорость автобуса)

- Можем сразу ее найти? (Нет)

- Почему? (Не знаем расстояние, которое прошел пешеход за 15 мин)

- А можем это узнать? (Да)

- Как? (Скорость умножить на время)

- А сейчас можем ответить на главный вопрос задачи? (Нет)

- Почему? (Так как не знаем путь, который проехал автобус)

- Можем это узнать? (Да)

- Как узнаем? (К расстоянию между пунктами прибавим тот путь, который прошел пешеход за 15 мин)

- Можем теперь ответить на вопрос задачи? (Да)

- Как? (Надо весь путь, который проехал автобус, разделить на время)

- Итак, во сколько действий решается задача? (В 3 действия)

- Записываем решение:

15 мин =

1) 6 ׃ 4 ∙ 1 = 1,5 (км) – прошел поезд за 15 мин.

2) 7,5 + 1,5 = 9 (км) – прошел автобус до того, как догнал пешехода.

3) 9 : 1 ∙ 4 = 36 (км/ч) – скорость автобуса.

Ответ: 36 км/ч.

Задача 2: (№ 1169)

«а) Теплоход идет вниз по реке. Какова скорость движения теплохода, если скорость течения реки 4 км/ч, а собственная скорость теплохода (скорость в стоячей воде) равна 21 км/ч?

б) Моторная лодка идет вверх по реке. Какова скорость движения лодки, если скорость течения 3 км/ч, а собственная скорость лодки 14 км/ч?»

- Внимательно читаем задачи.

- О каких величинах идет речь в задачах?

- Для решения данных задач составим таблицу.

- Запишем, что уже известно.

Собств. v (км/ч) V течения (км/ч)

V по течению реки

(км/ч)

V против течения

(км/ч)

21 4 ? -
14 3 - ?

а)

б)

- То, что нужно найти обозначим знаком вопроса.

- Что узнаем сначала? (Скорость теплохода по течению реки)

- Как можно ее найти? (Надо к собственной скорости теплохода прибавить скорость течения реки)

- Что можно узнать сейчас? (Скорость моторной лодки против течения реки)

- Как найдем? (Нужно из собственной скорости лодки вычесть скорость течения реки)

Записываем решение:

а) 21 + 4 = 25 (км/ч) – скорость движения теплохода.

б) 14 – 3 = 11 (км/ч) – скорость движения лодки.

Ответ: а) 25 км/ч;

б) 11 км/ч.

- Давайте еще раз повторим:

Как же найти скорость по течению реки и против течения реки?

Задача 3: (№ 1172)

«Со станции вышел товарный поезд со скоростью 50 км/ч. Через 3 ч с той же станции вслед за ним вышел электропоезд со скоростью 80 км/ч. Через сколько часов после своего выхода электропоезд догонит товарный поезд?»

- Внимательно читаем задачу.

- Для решения данной задачи составим чертеж.

- Что нам известно? (Со станции вышел товарный поезд, а через 3 ч с той же станции вслед за ним вышел электропоезд)

- Отметим это на чертеже.

80 км/ч 50 км/ч

3 ч tвстр - ?

- Что еще известно в задаче? (Скорость товарного поезда 50 км/ч, скорость электропоезда 80 км/ч)

- Отметим эти данные на чертеже.

- Что нужно узнать? (Через сколько часов после своего выхода электропоезд догонит товарный поезд?)

- Обозначим неизвестное знаком вопроса.

- Известно, что товарный поезд шел 3 ч со скоростью 50 км/ч. Что можно узнать по этим данным? (Расстояние, которое пошел поезд за 3 ч)

- Что для этого нужно сделать? (Нужно скорость умножить на время)

- Зная скорость товарного поезда и электропоезда, что можно узнать? (Скорость сближения)

- Что для этого нужно сделать? (Нужно из скорости электропоезда вычесть скорость товарного поезда)

- Зная, сколько километров прошел товарный поезд и скорость сближения поездов, что можем найти? (Время, через которое встретятся поезда)

- Как можем это найти? (Расстояние разделить на скорость сближения)

- Записываем решение:

1) 50 ∙ 3 = 150 (км) – прошел товарный поезд.

2) 80 – 50 = 30 (км/ч) – скорость сближения.

3) 150 : 30 = 5 (ч) – через это время электропоезд догонит товарный поезд.

Ответ: через 5 часов.

Задача 4: (№ 1179)

«Два поезда вышли в разное время навстречу друг другу из двух городов, расстояние между которыми 782 км. Скорость первого поезда 52 км/ч, а второго 61 км/ч. Пройдя 416 км, первый поезд встретился со вторым. На сколько один из поездов вышел раньше другого?»

- Читаем внимательно задачу.

- Давайте к этой задаче составим чертеж.

- Что нам известно в задаче? (Два поезда вышли в разное время навстречу друг другу из двух городов)

- Отметим это на чертеже.


52 км/ч 61 км/ч

416 км

782 км

На сколько один из поездов вышел раньше другого?

- Что еще известно? (Расстояние между городами 782 км; скорость первого поезда 52 км/ч, а второго 61 км/ч)

- Отметим все данные на чертеже.

- Что нам еще дано? (Пройдя 416 км, первый поезд встретился со вторым)

- Покажем это на чертеже.

- Что нужно узнать в задаче? (На сколько один из поездов вышел раньше другого?)

- Можем сразу на него ответить? (Нет)

- Почему? (Не знаем, сколько часов ехал первый поезд)

- Можем это найти? (Да)