Смекни!
smekni.com

Исследование методов решения системы дифференциальных уравнений с постоянной матрицей (стр. 2 из 3)

Где аij найдем по выражению:


или

Полученная матрица:

Решаем систему:

Полученные корни:

Доопределим

Тогда первая строка будет иметь вид:


Аналогично найдем вторую строку фундаментальной матрицы решений для первого характеристического числа -1. Полученные значения:

Тогда вторая строка будет иметь вид:

Найдем третью и четвертую строки фундаментальной матрицы решений для первого характеристического числа

. Сопряженный корень
не порождает новых вещественных линейно независимых частных решений.

Полученные значения:


Отделяя в нем вещественные и мнимые части, получим два вещественных решения, которые и составляют первую и вторую строки фундаментальной матрицы решений

Аналогично остальные 3:

Запишем найденную фундаментальную матрицу решений:

Умножим транспонированную фундаментальную матрицу решений на вектор свободных коэффициентов

и получим вектор общего решения исходной системы:

Сделаем проверку найденного решения следующим образом:

Получаем нулевую матрицу-столбец:

что показывает, что общее решение найдено верно.

5. Нахождение приближённого решения в виде матричного ряда

Дадим определение матричному ряду и экспоненциальной функции матрицы.

Матричные ряды. Рассмотрим бесконечную последовательность матриц

,
,
. Будем говорить, что последовательность матриц сходится к матрице А:

,

если

при
. Из определения нормы следует, что сходимость матриц эквивалентна поэлементной сходимости. Матричным рядом называется символ
, причем говорят, что этот ряд сходится к сумме
, если к f сходится последовательность частичных сумм Sk, где

.

Пусть

, тогда можно определить степень матрицы А обычным образом:

(k раз).

Рассмотрим ряд, называемый степенным:

,
,
,

где по определению положим A0 = En.

Экспоненциальная функция матрицы. В качестве примера рассмотрим степенной ряд, равный:

.

Так как радиус сходимости соответствующего числового ряда


Равен бесконечности, то ряд сходится при всех А. Сумма ряда называется экспоненциальной функцией (экспонентой) и обозначается через еА, если ехр{А}.

Приближенно вектор решений можно найти как произведение матричного ряда:

и вектора начальных условий y0=[y1,y2, …..yk].

Формула является матричной задачей Коши в приближенном виде.

Экспонентой

матрицы А называется сумма ряда

где Е – единичная матрица.

Матрица

является решением матричной задачи Коши:

т.е. является фундаментальной матрицей системы.

Найдем разложение матричного ряда последовательно по семи, восьми и десяти первым членам.

для получения разложения по 7 первым членам (аналогично по 8,10 и 10). Результатом будет являться матрица 4*4. Полученные матрицы умножаем на вектор начальных условий S=[1,2,3,4] и получаем приближенное решение в виде матричного ряда.



При увеличении членов разложения ряда вектор приближенных решений будет стремиться к вектору точных решений. Этот факт можно наблюдать, графически сравнивая изображение точного и приближенного решений (см. приложение).

Умножим на соответствующий вектор начальных условий и получим приближенное решение в виде матричного ряда, запишем полученное решение для n=7.

[s1 ≔ 1, s2 ≔ 2, s3 ≔ 3, s4 ≔ 4]

6. Построение общего решения матричным методом

Матричный метод решения системы уравнений (1) основан на непосредственном отыскании фундаментальной матрицы этой системы.




Экспонентой eA матрицы А называется сумма ряда

где Е – единичная матрица.

Свойство матричной экспоненты:

а) если АВ=ВА, то еА+ВАВ= еВА;

б) если А=S-1*B*S, то еА=S-1*eB*S, где матрица S – это матрица преобразования переменных из собственного базиса в базис исходных переменных.

в) матрица y(t)=eAt является решением матричной задачи Коши:

т.е. является фундаментальной матрицей системы (1).

Из свойства в) следует, что решение y(t) системы (1) удовлетворяющее условию y(0)=y0, определяется выражением y(t)=eAt*y0. Таким образом, задача нахождения решений системы уравнений (1) эквивалентна задачи отыскания матрицы eAt по матрице А.

Для вычисления матрицы eAt удобно представить матрицу А в виде:

,

где матрица S – это матрица преобразования переменных из собственного базиса в базис исходных переменных, а BА – жорданова форма матрицы А, т.к. eAt= S-1*eBt*S.

Жорданова форма матрицы зависит от вида характеристических чисел.

1. Пусть характеристические числа действительные кратные, тогда Жорданова форма матрицы размерности nxn имеет вид:


где

- действительный корень кратности n.

2. Если среди корней характеристического полинома имеются, как действительные разные, так и действительные кратные корни, то матрица В имеет вид:

где

- действительные разные корни, а
- действительный корень кратности 2.

3. При наличии среди корней характеристического полинома корней комплексно-сопряженных Жорданова клетка выглядит следующим образом: