F*(х) = Р* = P* (X<x)
Статистическая функция распределения (эмпирическая) является разрывной функцией, точки разрыва совпадают с наблюдаемыми значениями случайной величины, а скачок в каждой точке разрыва равен частоте появления наблюдаемого значения в данной серии наблюдения. Сумма скачков всегда равна 1.
9
Σ Pi* = 1
i=1
1) ∞ < х ≤ 28
F* (x) =P* (X<28) =0
2) 28<x≤29
F* (x) =P* (X<29) =P* (X=28) =1/130
3) 29<x≤30
F* (x) =P* (X=28) + P* (X=29) =1/130+3/130=4/130
4) 30<x≤31
F* (x) =P* (X<31) = P* (X=28) + P* (X=29) P* (X=30) +1/130+3/130+18/130=22/130
5) 31<x≤32
F* (x) =P* (X<32) = P* (X=28) + +P* (X=29) +P* (X=30) +P* (X=31) =1/130+3/130+18/130+29/130=51/130
6) 32<x≤33
F* (x) =P* (X<33) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31)
P* (X=32) =1/130+3/130+18/130+29/130+32/130=83/130
7) 33<x≤34
F* (x) =P* (X<34) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31) +
+P* (X=32) +P* (X=33)
=1/130+3/130+18/130+29/130+32/130+24/130=107/130
8) 34<x≤35
F* (x) =P* (X<35) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31) +
+P* (X=32) +P* (X=33) P* (X=34) =
=1/130+3/130+18/130+29/130+32/130+24/130+18/130=125/130
9) 35<x≤36
F* (x) =P* (X<36) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31) +
+P* (X=32) +P* (X=33) P* (X=34) + P* (X=35)
=1/130+3/130+18/130+29/130+32/130+24/130+18/130+4/130=129/130
10) x>36
F* (x) =1
1/130, -∞<х≤29
4/130, 29<х≤30
22/130, 30<х≤31
F*(x) 51/130, 31<х≤32
83/130, 32<х≤33
107/130, 33<х≤34
125/130, 34<х≤35
129/130, 35<х≤36
1, х>36
Статистическая функция распределения является разрывной функцией и её графиком является ступенчатая линия.
Построим систему координат:
на оси Ох=хi
на оси Оу=F* (x)
F*
Пусть для изучения генеральной совокупности относительно некоторого количественного признака Х произведена выборка объема n.
Если же значение признака х1, х2,…. хk имеет соответственно частоты
xi | 28 | 29 | 30 | 32 | 32 | 33 | 34 | 35 | 36 |
ni | 1 | 3 | 18 | 29 | 32 | 24 | 18 | 4 | 1 |
28×1+29×3+30×18+31×29+32×32+33×24+34×18+35×4+36×1
хв =130
= 4158 = 31,98130
Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюдаемых значений от выборочной средней. Вычисляется выборочная дисперсия по формуле:
(28-31,98) 2×1+ (29-31,98) 2×3+ (30-31,98) 2×18+ (31-31,98) 2×29+
Dв= + (32-31,98) 2×32+ (33-31,98) 2×24+ (34-31,98) 2×18+ (35-31,98) 2×
×4+ (36-31,98) 2×1 =
130 = 291,972 = 2,24130
Среднее выборочное квадратичное отклонение - это величина численно равная квадратному корню из выборочной дисперсии.
__
σв = √ 2,24 = 1,5
Говорят, что случайная величина распределена по нормальному закону если плотность распределения этой случайной величины выражается формулой:
Гипотезу Н0 выдвигаем в качестве основной - пусть наш исследуемый признак х распределён по нормальному закону. Параллельно гипотезе Н0 выдвигаем альтернативную гипотезу о том, что исследуемый признак распределен не по нормальному закону.
Проверка гипотезы о предполагаемом законе распределения производится с помощью специально подобранной величины называемой критерием согласия.
Для исследования воспользуемся критерием χ2 Пирсона.
Вычисляем χ2 для наблюдаемых значений. Для вычислений составляем таблицу и воспользуемся следующими формулами:
_
хв =31,98
_
Dв=2,24
_
σв=1,5
Таблица отдельный файл
k (ni-ni*)2
χ2 набл.=Σi=1 ni
χ2 набл=13,8725515
Далее находим χ2 с помощью таблицы критических точек распределения по заданному уровню значимости £=0,05 и числу степеней свободы.
К=S-3
5-3=2
χ2крит. =6,0
χ2 набл=13,8725515 > χ2крит=6,0
Гипотеза не принимается.
В данной работе был изучен статистический материал по исследованию прочности на разрыв полосок ситца, статистически были обработаны и получены соответствующие результаты.
Цель курсовой работы реализована через решение поставленных задач.
Наглядно представление о поведении случайной величины показано через полигон частот и полигон относительных частот, гистограммы частот и гистограммы относительных частот.
Была составлена и построена эмпирическая функция распределения и построен график этой функции на основе наблюдаемых значений.
0ценили параметры распределения:
выборочную среднюю
выборочную дисперсию
выборочное среднее квадратичное отклонение.
После обработки имеющихся статистических данных было выдвинуто предположение о нормальном распределении случайной величины. При проверке этой гипотезы оказалось, что случайная величина нераспределена по нормальному закону.
1. Гнеденко Б.В. Курс теории вероятностей: Учебник. - М.: Наука, 1988.
2. Боровков А.А. Теория вероятностей: Учеб. пособие.; М.: Наука, 1986.
3. Бочаров П.П., Печинкин А.В. Теория вероятностей: Учеб. пособие. - М.: Изд-во ун-та Дружбы народов, 1994.
4. Бочаров П.П., Печинкин А.В. Математическая статистика: Учеб. пособие. - М.: Изд-во ун-та Дружбы народов, 1994.
5. Б.М. Рудык, В.И. Ермаков, Р.К. Гринцевевичюс, Г.И. Бобрик, В.И. Матвеев, И.М. Гладких, Р.В. Сигитов, В.Г. Шершнев. Общий курс высшей математики для экономистов: Учебник / Под ред. В.И. Ермакова. - М.: ИНФАРМА-М, 2005. - 656с. - (Высшее образование).