Смекни!
smekni.com

Исследование функций (стр. 2 из 3)

2.1 Достаточные условия экстремума функции

В лекции 1 мы рассмотрели основные теоремы математического анализа, которые широко используются при исследовании функции, построении ее графика.

По теореме Ферма: из дифференцируемости функции f(x) в точке локального экстремума х0 следует, что f'(x0) = 0. Данное условие является необходимым условием существования в точке локального экстремума, то есть если в точке х0 – экстремум функции f(x) и в этой точке существует производная, то f'(x0) = 0. Точки х0, в которых f'(x0) = 0, называются стационарными точками функции. Заметим, что равенство нулю производной

в точке не является достаточным для существования локального экстремума в этой точке.

Пример 1. у = х3, у' = 3х2, у'(0) = 0, но

в точке х0 = 0 нет экстремума.

Точками, подозрительными на экстремум функции f(x) на интервале (a, b), являются точки, в которых производная существует и равна 0 либо она не существует или равна бесконечности. На рисунках функции имеют минимум в точке х0 = 0:

f'(0) = 0 f'(0) $f'(0) = ¥

Рассмотрим достаточные условия существования в точке локального экстремума, которые позволят ответить на вопрос: «Есть ли в точке экстремум и какой именно – минимум или максимум?».

Теорема 1 (первое достаточное условие экстремума). Пусть непрерывная функция f(x) дифференцируема в некоторой проколотой окрестности U(x0) точки х0 (проколотая окрестность означает, что сама точка х0 выбрасывается из окрестности) и непрерывна в точке х0. Тогда:

1) если

(1)

то в точке х0 – локальный максимум;

2) если

(2)

то в точке х0 – локальный минимум.

Доказательство.

Из неравенств (1) и следствия 3 теоремы Лагранжа (о монотонности функции) следует, что при х < х0 функция не убывает, а при х > х0 функция не возрастает, то есть

(3)

Следовательно, из (3) получаем, что в точке х0 функция имеет локальный максимум.

Аналогично можно рассмотреть неравенства (2) для локального минимума:


f (x) f (x)

f'(х) ³ 0 f'(х) £ 0 f'(х) £ 0 f'(х) ³ 0

Теорема доказана.

Пример 2. Исследовать на монотонность и локальный экстремум функцию

с помощью производной первого порядка.

Решение. Найдем стационарные точки функции:

Þ х2 –1 = 0 Þ х1 = –1, х2 = 1.

Заметим, что данная функция не определена в точке х = 0. Следовательно:

х (–¥; –1) –1 (–1; 0) 0 (0; 1) 1 (1; +¥)
у' + 0 0 +
у
–2
2

max min

То есть функция

возрастает на интервалах (–¥; –1) и (1; +¥), убывает на интервалах (–1; 0), (0; 1), имеет локальный максимум в точке

х1 = –1, равный уmax (–1) = –2; имеет локальный минимум в точке х2 = 1,

уmin (1) = 2.

Теорема 2 (второе достаточное условие экстремума). Пусть функция f(x) дважды непрерывно-дифференцируема. Если х0 – стационарная точка

(f'(х0) = 0), в которой f''(х0) > 0, то в точке х0 функция имеет локальный минимум. Если же f''(х0) < 0, то в точке х0 функция имеет локальный максимум.

Доказательство. Пусть для определенности f''(х0) > 0. Тогда

Следовательно:

при х< х0, f'(х) < 0,

при х> х0, f'(х) > 0.

Поэтому по теореме 1 в точке х0 функция имеет локальный минимум.

Теорема доказана.

Пример 3. Исследовать на экстремум функцию

с помощью второй производной.

Решение. В примере 2 для данной функции мы нашли первую производную

и стационарные точки х1 = –1, х2 = 1.

Найдем вторую производную данной функции:

Найдем значения второй производной в стационарных точках.

Þ в точке х1 = –1 функция имеет локальный максимум;

Þ в точке х2 = 1 функция имеет локальный минимум (по теореме 2).

Заметим, что теорема 1 более универсальна. Теорема 2 позволяет проанализировать на экстремум лишь точки, в которых первая производная равна нулю, в то время как теорема 1 рассматривает три случая: равенство производной нулю, производная не существует, равна бесконечности в подозрительных на экстремум точках.

2.2 Исследование функций на выпуклость и вогнутость. Точка перегиба

Пусть функция f(х) задана на интервале (a, b) и х1, х2 – любые различные точки этого интервала. Через точки А (х1, f(х1)) и В (х2, f(х2)) графика функции f(х) проведем прямую, отрезок АВ которой называется хордой. Уравнение этой прямой запишем в виде у = у(х).

Функция f(х) называется выпуклой вниз на интервале (a, b), если для любых точек х1, х2Î (a, b), а £ х1 < х2£b, хорда АВ лежит не ниже графика этой функции, т. е. если f(х) £ у (х), œ х Î[х1, х2] Ì (a, b):


Заметим, что выпуклую вниз функцию иногда называют вогнутой функцией. Аналогично определяется выпуклость функции вверх.

Функция f(х) называется выпуклой вверх на интервале (a, b), если для любых точек х1, х2Î (a, b), а £ х1 < х2£b, хорда АВ лежит не выше графика этой функции, т. е. если f(х) ³ у (х), œ х Î[х1, х2] Ì (a, b):

Теорема 3 (достаточное условие выпуклости). Если f(х) – дважды непрерывно дифференцируема на интервале (a, b) и

1) f''(х) > 0, œ х Î(a, b), то на (a, b) функция f(х) выпукла вниз;

2) f''(х) < 0, œ х Î(a, b), то на (a, b) функция f(х) выпукла вверх.

Точка х0 называется точкой перегиба функцииf(х), если $d – окрест-ность точки х0, что для всех х Î (х0 – d, х0) график функции находится с одной стороны касательной, а для всех х Î (х0, х0 + d) – с другой стороны каса-тельной,проведенной к графику функции f(х) в точке х0, то есть точка х0 – точка перегиба функции f(х), если при переходе через точку х0 функция f(х) меняет характер выпуклости:


х0 – d х0 х0 + d

Теорема 4 (необходимое условие существования точки перегиба). Если функция f(х) имеет непрерывную в точке х0 производную f'' и х0 – точка перегиба, то f'' (х0) = 0.

Доказательство.

Если бы f'' (х0) < 0 или f'' (х0) > 0, то по теореме 3 в точке х0 функция f(х) была бы выпукла вверх или вниз. Следовательно, f''(х0) = 0.

Теорема доказана.

Теорема 5 (достаточное условие перегиба). Если функция f(х) дважды непрерывно дифференцируема в окрестности точки х0 и при переходе через точку х0 производная f''(х) меняет знак, то точка х0 является точкой перегиба функции f(х).

Пример 4. Исследовать на выпуклость и найти точки перегиба функции у = х3.

Решение. у' = 3х2, у'' = 6х = 0 Þ х0 = 0 – точка, подозрительная на перегиб.

В точке х0 = 0 функция у = х3 имеет перегиб:

х (–¥; 0) 0 (0; +¥)
у'' 0 +
у выпукла вверх 0 выпукла вниз
точка перегиба

Пример 5. Исследовать на выпуклость и найти точки перегиба функции

.

Решение. В примере 3 мы уже находили вторую производную данной функции

. Так как
то точек подозрительных на перегиб нет. Рассмотрим промежутки выпуклости:
х (–¥; 0) 0 (0; +¥)
у'' +
у выпукла вверх выпукла вниз
функция не определена

2.3 Асимптоты графика функции