Асимптотой будем называть прямую, к которой график функции неограниченно близко приближается. Различают вертикальные и наклонные асимптоты.
Прямая х = х0 называется вертикальной асимптотой графика функции f(х), если хотя бы один из пределов f(х0 – 0) или f(х0 + 0) равен бесконечности.
Пример 6. Найти вертикальные асимптоты функций:
а)
б) в)Решение. Вертикальными асимптотами функций будут прямые х = х0, где х0 – точки, в которых функция не определена.
а) х = 3 – вертикальная асимптота функции
. Действительно, ;б) х = 2, х = –4 – вертикальные асимптоты функции
. Действительно, , ;в) х = 0 – вертикальная асимптота функции
Действительно, .Прямая у = kx + b называется наклонной асимптотой графика непрерывной функции f(х) при х ® +¥ или х ® –¥, если f(х) = kx + b + α(х),
, то есть если наклонная асимптота для графика функции f(х) существует, то разность ординат функции f(х) и прямой у = kx + b в точке х стремится к 0 при х ® +¥ или при х ® –¥.Теорема 6. Для того чтобы прямая у = kx + b являлась наклонной асимптотой графика функции f(х) при х ® +¥ или х ® –¥, необходимо и достаточно существование конечных пределов:
Следовательно, если хотя бы один из данных пределов не существует или равен бесконечности, то функция не имеет наклонных асимптот.
Пример 7. Найти наклонные асимптоты функции
Решение. Найдем пределы (4):
Следовательно, k = 1.
Следовательно, b = 0.
Таким образом, функция
имеет наклонную асимптотуу = kx + b = 1 · х + 0 = х.
Ответ: у = х – наклонная асимптота.
Пример 8. Найти асимптоты функции
.Решение.
а) функция неопределенна в точках х1 = –1, х2 = 1. Следовательно, прямые х1 = –1, х2 = 1 – вертикальные асимптоты данной функции.
Действительно,
.б) у = kx + b.
Следовательно, у = 2х + 1 – наклонная асимптота данной функции.
Ответ: х1 = –1, х2 = 1 – вертикальные, у = 2х + 1 – наклонная асимп-
тоты.
2.4 Общая схема построения графика функции
1. Находим область определения функции.
2. Исследуем функцию на периодичность, четность или нечетность.
3. Исследуем функцию на монотонность и экстремум.
4. Находим промежутки выпуклости и точки перегиба.
5. Находим асимптоты графика функции.
6. Находим точки пересечения графика функции с осями координат.
7. Строим график.
Прежде чем перейти к примерам, напомним определения четности и нечетности функции.
Функция у = f(х) называется четной, если для любого значения х, взятого из области определения функции, значение (–х) также принад-лежит области определения и выполняется равенство f(х) = f(–х). График четной функции симметричен относительно оси ординат.
Функция у = f(х) называется нечетной для любого значения х, взятого из области определения функции, значение (–х) также принадлежит об-ласти определения, и выполняется равенство f(–х) = –f(х). График не-четной функции симметричен относительно начала координат.
Пример 9. Построить график
.Решение. Мы используем данные, полученные для этой функции в других примерах.
1. D(у) = (–¥; 0) È (0; +¥).
2.
Следовательно, функция нечетная. Ее график будет симметричен относительно начала координат.3. (см. пример 2). Исследуем функцию на монотонность и экстремум:
х | (–¥; –1) | –1 | (–1; 0) | 0 | (0; 1) | 1 | (1; +¥) |
у' | + | 0 | – | – | – | 0 | + |
у | –2 | – | 2 |
max min
4. (см. пример 5). Исследуем функцию на выпуклость и найдем точки перегиба.
х | (–¥; 0) | 0 | (0; +¥) |
у'' | – | – | + |
у | выпукла вверх | – | выпукла вниз |
функция не определена |
Несмотря на то, что функция поменяла характер выпуклости при переходе через точку х = 0, но в ней нет перегиба, так как в этой точке функция не определена.
5. (см. примеры 6 и 7). Найдем асимптоты функции:
а) х = 0 – вертикальная асимптота;
б) у = х – наклонная асимптота.
6. Точек пересечения с осями координат у данной функции нет, так как
, при любых х Îú, а х = 0 ÏD(у).7. По полученным данным строим график функции:
Пример 10. Построить график функции
.Решение.
1. D(у) = (–¥; –1) È (–1; 1) È (1; +¥).
2.
– функция нечетная. Следовательно, график функции будет симметричен относительно начала координат.3. Исследуем функцию на монотонность и экстремум:
3х2 – х4 = 0, х2 · (3 – х2) = 0, х1 = 0, х2 =
, х3 = .х | (–¥; ) | ( ; 0) | –1 | (–1; 0) | 0 | (0; 1) | 1 | (1; ) | ( ; +¥) | ||
у' | – | 0 | + | – | + | 0 | + | – | + | 0 | – |
у | 2,6 | – | 0 | – | –2,6 |
4. Исследуем функцию на выпуклость и точки перегиба:
х = 0 – точка, подозрительная на перегиб.
х | (–¥; –1) | –1 | (–1; 0) | 0 | (0; 1) | 1 | (0; +¥) |
у'' | + | – | – | 0 | + | – | – |
у | выпукла вниз | – | выпукла вверх | 0 | выпукла вниз | – | выпукла вниз |
перегиб |
5. Найдем асимптоты функции:
а) х = –1, х = 1 – вертикальные асимптоты.
Действительно:
б) у = kx + b.
,Þ у = –1х + 0 = – х – наклонная асимптота.
6. Найдем точки пересечения с осями координат:
х = 0 Þ у = 0 Þ (0; 0) – точка пересечения с осями координат.
7. Строим график:
ЛИТЕРАТУРА
1. Гусак А. А. Математический анализ и дифференциальные уравнения.– Мн.: Тетрасистемс, 1998. – 415 с.
2. Минченков Ю. В. Высшая математика. Производная функции. Дифференциал функции: Учебно-методическое пособие.– Мн.: ЧИУиП, 2007.– 20 с.