Смекни!
smekni.com

Исследование функций (стр. 3 из 3)

Асимптотой будем называть прямую, к которой график функции неограниченно близко приближается. Различают вертикальные и наклонные асимптоты.

Прямая х = х0 называется вертикальной асимптотой графика функции f(х), если хотя бы один из пределов f(х0 – 0) или f(х0 + 0) равен бесконечности.

Пример 6. Найти вертикальные асимптоты функций:


а)

б)
в)

Решение. Вертикальными асимптотами функций будут прямые х = х0, где х0 – точки, в которых функция не определена.

а) х = 3 – вертикальная асимптота функции

. Действительно,
;

б) х = 2, х = –4 – вертикальные асимптоты функции

. Действительно,

,

;

в) х = 0 – вертикальная асимптота функции

Действительно,
.

Прямая у = kx + b называется наклонной асимптотой графика непрерывной функции f(х) при х ® +¥ или х ® –¥, если f(х) = kx + b + α(х),

, то есть если наклонная асимптота для графика функции f(х) существует, то разность ординат функции f(х) и прямой у = kx + b в точке х стремится к 0 при х ® +¥ или при х ® –¥.

Теорема 6. Для того чтобы прямая у = kx + b являлась наклонной асимптотой графика функции f(х) при х ® +¥ или х ® –¥, необходимо и достаточно существование конечных пределов:


(4)

Следовательно, если хотя бы один из данных пределов не существует или равен бесконечности, то функция не имеет наклонных асимптот.

Пример 7. Найти наклонные асимптоты функции

Решение. Найдем пределы (4):

Следовательно, k = 1.

Следовательно, b = 0.

Таким образом, функция

имеет наклонную асимптоту

у = kx + b = 1 · х + 0 = х.

Ответ: у = х – наклонная асимптота.

Пример 8. Найти асимптоты функции

.

Решение.

а) функция неопределенна в точках х1 = –1, х2 = 1. Следовательно, прямые х1 = –1, х2 = 1 – вертикальные асимптоты данной функции.

Действительно,

.

;

б) у = kx + b.

Следовательно, у = 2х + 1 – наклонная асимптота данной функции.

Ответ: х1 = –1, х2 = 1 – вертикальные, у = 2х + 1 – наклонная асимп-

тоты.

2.4 Общая схема построения графика функции

1. Находим область определения функции.

2. Исследуем функцию на периодичность, четность или нечетность.

3. Исследуем функцию на монотонность и экстремум.

4. Находим промежутки выпуклости и точки перегиба.

5. Находим асимптоты графика функции.

6. Находим точки пересечения графика функции с осями координат.

7. Строим график.

Прежде чем перейти к примерам, напомним определения четности и нечетности функции.

Функция у = f(х) называется четной, если для любого значения х, взятого из области определения функции, значение (–х) также принад-лежит области определения и выполняется равенство f(х) = f(–х). График четной функции симметричен относительно оси ординат.

Функция у = f(х) называется нечетной для любого значения х, взятого из области определения функции, значение (–х) также принадлежит об-ласти определения, и выполняется равенство f(–х) = –f(х). График не-четной функции симметричен относительно начала координат.

Пример 9. Построить график

.

Решение. Мы используем данные, полученные для этой функции в других примерах.

1. D(у) = (–¥; 0) È (0; +¥).

2.

Следовательно, функция нечетная. Ее график будет симметричен относительно начала координат.

3. (см. пример 2). Исследуем функцию на монотонность и экстремум:

х (–¥; –1) –1 (–1; 0) 0 (0; 1) 1 (1; +¥)
у' + 0 0 +
у
–2
2

max min

4. (см. пример 5). Исследуем функцию на выпуклость и найдем точки перегиба.

х (–¥; 0) 0 (0; +¥)
у'' +
у выпукла вверх выпукла вниз
функция не определена

Несмотря на то, что функция поменяла характер выпуклости при переходе через точку х = 0, но в ней нет перегиба, так как в этой точке функция не определена.

5. (см. примеры 6 и 7). Найдем асимптоты функции:

а) х = 0 – вертикальная асимптота;

б) у = х – наклонная асимптота.

6. Точек пересечения с осями координат у данной функции нет, так как

, при любых х Îú, а х = 0 ÏD(у).

7. По полученным данным строим график функции:

Пример 10. Построить график функции

.

Решение.

1. D(у) = (–¥; –1) È (–1; 1) È (1; +¥).

2.

– функция нечетная. Следовательно, график функции будет симметричен относительно начала координат.

3. Исследуем функцию на монотонность и экстремум:

2 – х4 = 0, х2 · (3 – х2) = 0, х1 = 0, х2 =

, х3 =
.
х (–¥;
)
(
; 0)
–1 (–1; 0) 0 (0; 1) 1 (1;
)
(
; +¥)
у' 0 + + 0 + + 0
у
2,6
0
–2,6

4. Исследуем функцию на выпуклость и точки перегиба:

х = 0 – точка, подозрительная на перегиб.

х (–¥; –1) –1 (–1; 0) 0 (0; 1) 1 (0; +¥)
у'' + 0 +
у выпукла вниз выпукла вверх 0 выпукла вниз выпукла вниз
перегиб

5. Найдем асимптоты функции:

а) х = –1, х = 1 – вертикальные асимптоты.

Действительно:


б) у = kx + b.

,

Þ у = –1х + 0 = – х – наклонная асимптота.

6. Найдем точки пересечения с осями координат:

х = 0 Þ у = 0 Þ (0; 0) – точка пересечения с осями координат.

7. Строим график:


ЛИТЕРАТУРА

1. Гусак А. А. Математический анализ и дифференциальные уравнения.– Мн.: Тетрасистемс, 1998. – 415 с.

2. Минченков Ю. В. Высшая математика. Производная функции. Дифференциал функции: Учебно-методическое пособие.– Мн.: ЧИУиП, 2007.– 20 с.