рис. 2.5 рис. 2.6
Знайдемо площу S криволiнiйної трапеції, обмеженої параболою, яка проходить через точки А, В, С, і прямими х = -h, х = h,y =0 (рис. 2.5):
Розглянемо тепер криволiнiйну трапецію
, обмежену кривою у = f(х) (рис. 2.6). Якщо через точки цієї кривої провести параболу , то за формулою (6) (7)Однак, якщо вiдрiзок [a;b] досить значний, то формула (7) матиме велику похибку. Щоб збільшити точність, розіб’ємо вiдрiзок [a;b] на парне число 2n однакових частин, а криволiнiйну трапецію — на n частинних криволiнiйних трапецій. Застосовуючи до кожної з цих трапецій формулу (7), дістанемо
Додамо почленно ці наближені рiвностi:
Ця формула називається формулою парабол або формулою Сiмпсона. Формули (1), (2), (3), (4) i (8) називаються квадратурними.
Різницю між лівою i правою частиною квадратурної формули називають її залишковим членом i позначають через
. Абсолютна похибка квадратурної формули, очевидно, залежить від числа n — кiлькостi частинних вiдрiзкiв, на які розбивається вiдрiзок інтегрування [а;b]. Наведемо формули, які дозволяють, по-перше, оцінювати абсолютні похибки квадратурних формул, якщо задано n,і, по-друге, визначати число n так, щоб обчислити заданий інтеграл з наперед заданою точністю.Якщо функція f (х) має на вiдрiзку [а; b] неперервну похідну
i , то абсолютна похибка наближених рівностей (1) — (4) оцінюється формулою (9)Для функцій f(x), які мають другу неперервну похідну і
, виконується нерівність (10)яка справедлива для формул прямокутників і трапецій.
Абсолютна похибка в наближеній рівності (8) оцінюється формулою
(11)Якщо функція f(x) має на відрізку [a;b] четверту неперервну похідну і
то для формули Сiмпсона справедлива оцінка: (12)Приклад:
1. Обчислити інтеграл
.Це інтеграл від біноміального диференціала, який в елементарних функціях не обчислюється. Обчислимо його наближено. Розіб’ємо відрізок [0;1] на 10 рівних частин точками
.Знайдемо значення функції
в цих точках:За формулою прямокутників маємо
Оскільки
то залишковий член формули прямокутниківОтже, І=1,06990
0,03536.За формулою трапецій (4) дістанемо
Оскільки
, то залишковий член формули трапеційОтже, І=1,09061
0,00236.За формулою Сiмпсона (2n=10)
Оскільки
то залишковий член формули СiмпсонаТаким чином, І=1,08949
0,000012, тобто формула Сiмпсона значно точніша формули прямокутників і трапецій.Невласні інтеграли. Ознаки збіжності невласних інтегралів
Раніше було введено визначений інтеграл як границю інтегральних сум, передбачаючи при цьому, що вiдрiзок інтегрування скiнченний, а пiдiнтегральна функція на цьому вiдрiзку обмежена. Якщо хоча б одна з цих умов порушується, то наведене вище означення визначеного інтеграла стає неприйнятним: у випадку нескінченного проміжку інтегрування його не можна розбити на п частинних вiдрiзкiв скiнченної довжини, а у випадку необмеженої функції інтегральна сума явно не має скiнченної границі. Узагальнюючи поняття визначеного інтеграла на ці випадки, приходимо до невласного інтеграла — інтеграла від функції на необмеженому проміжку або від необмеженої функції.
1. Невласні інтеграли з нескінченними межами інтегрування (невласні інтеграли першого роду).
Нехай функція f(х) визначена на проміжку [a;
) і інтегрована на будь-якому відрізку [a;b], де . Тоді, якщо існує скінченна границяїї називають невласним інтегралом першого роду і позначають так:
(14)Таким чином, за означенням
(15)У цьому випадку інтеграл (14) називають збіжним, а підінтегральну функцію f(x) – інтегрованою на проміжку (а;+ ).
Якщо ж границя (13) не існує або нескінченна, то інтеграл (14) називають також невласним але розбіжним, а функція f(x) – неінтегровною на [a;
).Аналогічно інтегралу (15) означається невласний інтеграл на проміжку [
; b): (16)Невласний інтеграл з двома нескінченними межами визначається рівністю
(17)де с – довільне число. Отже, інтеграл зліва у формулі (17) існує або є збіжним лише тоді, коли є збіжними обидва інтеграли справа. Можна довести, що інтеграл, визначений формулою (17), не залежить від вибору числа с.
З наведених означень видно, що невласний інтеграл не є границею інтегральних сум, а є границею означеного інтеграла із змінною межею інтегрування.
Зауважимо, що коли функція f(x) неперервна і невід’ємна на проміжку [a;
) і коли інтеграл (16) збігається, то природно вважати, що він виражає площу необмеженої області (рис. 3.1)рис. 3.1
Приклад:
Обчислити невласний інтеграл або встановити його розбіжність
а) За формулою (15) маємо
Отже інтеграл а) збігається.
б)
Оскільки ця границя не існує, то інтеграл б) розбіжний.
У розглянутих прикладах обчислення невласного інтеграла ґрунтувалося на його означенні. Проте у деяких випадках немає необхiдностi обчислювати інтеграл, а достатньо знати, збіжний він чи ні.
Теорема 1. Якщо на проміжку функції f(x) і g(x)неперервні і задовольняють умову , то із збіжності інтеграла
(18)
випливає збіжність інтеграла
, (19)
а із розбіжності інтеграла (19) випливає розбіжність інтеграла (18).
Наведена теорема має простий геометричний зміст (рис. 3.2); якщо площа більшої за розмірами необмеженої області є скiнченне число, то площа меншої області є також скiнченне число; якщо площа меншої області нескінченно велика величина, то площа більшої області є також нескінченно велика величина.