МІНІСТЕРСТВО ФІНАНСІВ УКРАЇНИ
БУКОВИНСЬКА ДЕРЖАВНА ФІНАНСОВА АКАДЕМІЯ
Кафедра ВМКТІС
ІНДИВІДУАЛЬНЕ НАВЧАЛЬНО-ДОСЛІДНЕ ЗАВДАННЯ
З ДИСЦИПЛІНИ «МАТЕМАТИКА ДЛЯ ЕКОНОМІСТІВ»
на тему: «ІНТЕГРАЛЬНЕ ЧИСЛЕННЯ»
Виконав:
Студент І курсу
Групи ФК-15
фінансово-економічного
факультету
Воронюк В.М.
Науковий керівник:
Головач В.М.
Чернівці-2008
ЗМІСТ
Інтеграли, що «не беруться»
Наближені методи обчислення визначених інтегралів
Невласні інтеграли. Ознаки збіжності невласних інтегралів
Ефективність реклами логістична крива
Список використаної літератури
1.Інтеграли, що «не беруться»
Як видно було з диференціального числення, похідна від довільної елементарної функції є також функцією елементарною. Інакше кажучи, операція диференціювання не виводить нас із класу елементарних функцій. Цього не можна сказати про інтегрування — операцію, обернену до диференціювання. Інтегрування елементарної функції не завжди знову приводить до елементарної функції. Подібне спостерігається й для інших взаємно обернених операцій: сума довільних натуральних чисел є завжди число Натуральне, а різниця — ні; добуток двох цілих чисел завжди є цілим числом, а частка — ні i т. п. Строго доведено, що існують елементарні функції, інтеграли від яких не є елементарними функціями. Про такі інтеграли кажуть, що вони не обчислюються в скiнченному вигляді або не 6еруться.
Наприклад, доведено, що «не беруться» такі інтеграли:
Зрозуміло, що інтеграл, який не обчислювався в класі елементарних функцій, може виявитись таким, що обчислюється в розширеному класі функцій.
Таким чином, інтегрування в порiвняннi з диференціюванням — операція набагато складніша. Тому треба твердо володіти основними методами інтегрування i чітко знати види функцій, інтеграли від яких цими методами знаходяться. Крім того, виявляється, що треба розрізняти також інтеграли, які «не беруться». Тому в iнженернiй практиці широко користуються довідниками, в яких мстяться докладні таблиці iнтегралiв, що виражаються через елементарні i неелементарні функції.
2.Наближені методи обчислення визначених інтегралів
Нехай треба обчислити визначений інтеграл
Наближені методи обчислення визначеного інтеграла здебільшого ґрунтуються на геометричному змiстi визначеного інтеграла: якщо f(х)
Ідея наближеного обчислення інтеграла полягає в тому, що задана крива y = f(х) замінюється новою лiнiєю, «близькою» до заданої. Тоді шукана площа наближено дорівнює площі фігури, обмеженої зверху цією лiнiєю.
1. Формули прямокутників. Нехай треба обчислити визначенийінтеграл
Поділимо вiдрiзок [а; b] на nрівних частин точками
= a +
рис. 2.1 рис. 2.2
і знайдемо значення функції f (х) в цих точках:
f ( .
Замінимо задану криволiнiйну трапецію (рис. 2.1) ступінчатою фігурою, що складається з nпрямокутників. Основи цих прямокутників однакові i дорівнюють
Якщо висоти прямокутників є значення
Можна довести, що похибка наближеної формули зменшиться, якщо висотами прямокутників взяти значення функції в точках
Формули (1)-(3) називаються формулами прямокутників.
2. Формула трапецій. Замінимо криву f(х) не ступінчатою лiнiєю, як у попередньому випадку, а ламаною (рис. 2.3), сполучивши сусiднi точки (
рис. 2.3 рис. 2.4
Площа k-ї трапеції дорівнює
основи трапеції, а
Формула (4) називається формулою трапецій.
3. Формула Сiмпсона. Під час виведення формули трапеції криву, яка є графіком функцій у = f(х), замінювали ламаною лiнiєю. Щоб дістати точніший результат, замінимо цю криву іншою кривою, наприклад параболою.
Покажемо спочатку, що через три рiзнi точки
Справді, підставляючи в рівняння параболи координати заданих точок, дістанемо систему рівнянь:
визначник якої
оскільки числа
Зокрема, розв’язуючи систему (5) для точок А (-h;