Евдоксова теорія відносин покінчила з арифметичною теорією піфагорійців, застосовної тільки до сумірних величин. Це була чисто геометрична теорія, викладена в строгій аксіоматичній формі, і вона зробила зайвими які-небудь застереження щодо чи несумірності сумірності розглянутих величин.
Сучасна теорія ірраціонального числа, побудована Дедекиндом і Вейерштрассом, майже буквально випливає ходу думок Евдокса, але вона відкриває значно більш широкі перспективи завдяки використанню сучасних математичних методів.
"Метод вичерпування" (термін "вичерпування" уперше з'являється в Григорія Сен Венсана, 1647 р.) був відповіддю школи Платона Зенонові. Метод обходив усі пастки нескінченно малого, попросту усуваючи їх, тому що зводив проблеми, у яких могли з'явитися нескінченно малі, до проблем, розв'язуваним засобами формальної логіки. Наприклад, якщо було потрібно довести, що обсяг V тетраедра дорівнює однієї третини обсягу З призми з тією же підставою і тією же висотою, то доказ полягав у тому, щоб показати абсурдність як допущення, що V
Великим недоліком цього методу було те, що треба було заздалегідь знати результат, щоб його довести, так що математик повинний був спершу прийти до результату менш строгим шляхом, за допомогою проб і спроб.
Є ясні вказівки на те, що такого роду інший метод дійсно використовувався. Ми маємо у своєму розпорядженні лист Архімеда Ератосфену (близько 250 р. до н.е. ), що було виявлено лише в 1906 р. і в який Архімед описує нестрогий, але плідний спосіб одержання результатів. Це лист відомий за назвою "Метод". С. Лур'є висунув припущення, що в ньому виражені погляди математичної школи, що суперничала зі школою Евдокса, виникла, як і та, у період кризи і зв'язана була з Демокрітом, засновником атомістики. Відповідно до теорії Лур'є, школа Демокрита ввела поняття "геометричного атома". Передбачалося, що відрізок прямої, площа, обсяг складаються з великого, але кінцевого числа неподільних "атомів". Обчислення обсягу тіла було підсумовуванням обсягів усіх "атомів", з яких складалося тіло. Ця теорія може показатися безглуздою, якщо не згадати, що деякі математики епохи до Ньютона, особливо Вієт і Кеплер, по суті, користалися такими ж поняттями і вважали окружність складеної з дуже великого числа малюсіньких відрізків. Немає ніяких даних про те, що в стародавності на такій основі був розвитий строгий метод, але наші сучасні поняття межі дали можливість перетворити цю "атомну" теорію в теорію настільки ж строгу, як і метод вичерпування. Навіть у наші дні ми звичайно користуємося таким поняттям "атома" при постановці математичних задач у теорії пружності, чи фізику в хімії, залишаючи строгу теорію з переходами до межі професійним математикам.
Перевага "атомного" методу перед методом вичерпування в тім, що перший полегшує перебування нових результатів. Отже, в античності був вибір між строгим, але відносно марним методом і методом з хибким обґрунтуванням, але більш плідним. Повчально, що майже всі класичні автори застосовують перший метод. Це знов-таки може бути зв'язане з тим, що математика стала коником дозвільного класу, що спирався на рабство, байдужого до винаходів, зі споглядальними інтересами. Можливо і те, що в цьому позначилася перемога в області філософії математики ідеалізму Платона над матеріалізмом Демокріта.
У 334 р. до н.е.. Олександр Македонський почав завоювання Персії. У 323 р., коли він помер у Вавилоні, всей Близьких Схід був у руках греків. Полководці Олександра розділили між собою його завоювання, і згодом виникли три імперії: Єгипет, під владою Птолемеїв; Месопотамія і Сирія, під владою Селевкидів; Македонія, під владою Антигону і його спадкоємців. Навіть у долині Інду були грецькі князі. Почалася епоха еллінізму.
Прямим наслідком походів Олександра було те, що прискорилося проникнення грецької цивілізації у великі райони східного світу. Еллінізувались Єгипет, Месопотамія, частина Індії. Греки заспішили на Близький Схід - торговці, купці, лікарі, мандрівники, найманці, шукачі пригод. У містах - багато хто з них були недавно засновані, що було легко розпізнати по їхніх елліністичних назвах, - військова справа й адміністрація були в руках греків, населення було змішаним, греко-східним. Але еллінізм був істотно міською цивілізацією. Село зберегло своє корінне населення і свій традиційний життєвий уклад. У містах же стара культура Сходу стикалася з імпортованою цивілізацією греків і частково змішалася з нею, хоча завжди залишалося в силі глибоке розходження цих двох світів. Монархи епохи еллінізму користувалися східним звичаям, вирішували східні проблеми керування, але заохочували грецьке мистецтво, грецьку літературу і грецьку науку.
Так і грецька математика була пересаджена в нове середовище. Вона зберегла багато своїх колишніх особливостей, але зазнала впливу від тих адміністративних і астрономічних запитів, що висував Схід. Таке тісне зіткнення грецької науки зі Сходом виявилося винятково плідним, особливо в перші сторіччя. Фактично вся дійсно творча робота, що ми називаємо "грецькою математикою", була пророблена за порівняно короткий термін від 350, до 200 р. до н.е. , від Евдокса до Аполлонія, і навіть досягнення Евдокса відомі нам тільки в тім тлумаченні, у якому ми їх знаходимо в Евкліда й Архімеда. Чудово також, що найбільшого розквіту ця елліністична математика досягла в Єгипті Птолемеєв, а не в Месопотамії, хоча у Вавілоні корінна математика була на більш високому рівні.
Можливо, що це було обумовлено центральним положенням Єгипту тієї епохи в средземноморському світі. Його нова столиця, Олександрія, побудована на березі моря, стала розумовим і господарським центром елліністичного світу. Вавілон же животів, як віддалений центр караванних шляхів, та й зовсім сходив зі сцени - його перемінив Ктесифон-Селевкія, нова столиця імперії Селевкідів. Наскільки відомо, жоден з великих грецьких математиків не був коли-небудь, зв'язаний з Вавілоном. В Антіохії і Пергаме, теж містах Селевкідської імперії, але більш близьких до Середземного моря, були важливі школи грецької науки. Однак корінна вавілонська астрономія і математика саме при Селевкідах досягли свого вищого рівня, і ми тільки тепер починаємо краще розуміти, наскільки істотно був їхній вплив на грецьку астрономію. Афіни стали освітнім центром, а Сіракузи дали Архімеда, найбільшого грецького Математика.
У цю епоху з'явилася професійна вчений-людина, що присвячує своє життя розвитку науки й одержує за це винагороду. Деякі з найбільш видатних представників такої групи людей жили в Олександрії, де Птолемеї побудували великий науковий центр, так званий Музей з його знаменитою бібліотекою. Там зберігалася і множилася наукова і літературна спадщина греків і домоглися при цьому значних успіхів. Одним з перших зв'язаних з Олександрією вчених був Евклід, що є одним з найбільш впливових математиків усіх часів.
Про життя Евкліда ми не маємо ніяких достовірних даних. Ймовірно, він жив у часи першого Птолемея (306-283), якому, відповідно до переказу, він заявив, що до геометрії ні "царської дороги". Його найбільш знаменитий і найбільш видатний здобуток - тринадцять книг його "Початки" (Stoіcheіa), але йому приписують кілька інших менших праць. Серед останніх так звані "Дані" (Data), що містять те, що ми назвали б додатками алгебри до геометрії, але все це викладено строго геометричною мовою. Ми не знаємо, яка частина цих праць належить самому Евкліду і якій частині складають компіляції, але в багатьох місцях виявляється разюча проникливість. Це перші, математичні праці, що дійшли до нас від древніх греків цілком. В історії Західного світу "Початки", після Біблії, ймовірно, найбільше число раз видана і найбільше вивчаєма книга. Після винаходу друкарства з'явилося більше тисячі видань, а до того ця книга, переважно в рукописному виді, була основною при вивченні геометрії. Велика частина нашої шкільної геометрії запозичена часто буквально з перших шести книг "Початки", і традиція Евкліда дотепер тяжіє над нашим елементарним навчанням. Для професійного математика ці книги усе ще мають непереборне зачарування, а їхня логічна побудова вплинула на наукове мислення, мабуть, більше, аніж який би то не був інший здобуток. Виклад Евкліда побудований у виді строго логічних висновків теорем із системи визначень, постулатів і аксіом. У перших чотирьох книгах розглядається геометрія на площині. Виходячи з найбільш простих властивостей ліній і кутів, ми приходимо тут до рівності трикутників, рівності площ, теоремі Піфагора, побудові квадрата, рівновеликого заданому прямокутнику, до золотого перетину, кола і до правильних багатокутників. У книзі V викладена Євдоксова теорія непорівнянних у її чисто геометричній формі, у книзі VІ ця теорія застосована до подоби трикутників. Таке введення подоби - на настільки пізньому етапі - складає одне з найбільш істотних розходжень між викладом планометрії в Евкліда і сучасним. Ці геометричні розгляди завершуються в десятій книзі, де багато хто вважає найбільш важкої в Евкліда. У ній дана геометрична класифікація квадратичних ірраціональностей і коренів квадратних з них, тобто тих чисел, що ми представляємо у виді