Смекни!
smekni.com

Історія математики Греції (стр. 4 из 5)

Книги VІІ -ІX присвячені теорії чисел, але не техніці обчислень, а таким "піфагорейским" питанням, як подільність цілих чисел, підсумовування геометричних прогресій, і деяким властивостям простих чисел. Отут ми зустрічаємо і "алгоритм Евкліда" для визначення найбільшого загального дільника заданої системи чисел, і "теорему Евкліда", що простих чисел нескінченно багато. Особливий інтерес представляє теорема VІ, у ній мова йде про першу з задач, що дійшли до нас, на максимум і доводиться, що з прямокутників заданого периметра найбільшу площу має квадрат. П'ятий постулат книги І (неясно, у якім відношенні знаходяться в Евкліда "аксіоми" і "постулати") еквівалентний так називаній "аксіомі рівнобіжних", відповідно до якої через крапку поза заданою прямою можна провести одну і тільки одну пряму, їй рівнобіжну. Спроби зробити з цієї аксіоми теорему змусили в дев'ятнадцятому сторіччі цілком оцінити мудрість Евкліда: це твердження було визнано аксіомою й у зв'язку з цим минулого відкриті інші, так називані неевклідової геометрії.

Алгебраїчні висновки в Евкліда приводяться винятково в геометричному виді. Вираження виду

вводиться як сторона квадрата з площею А, добуток а*в - це площа прямокутника зі сторонами а і в. Такий спосіб представлення насамперед був викликаний теорією відносин Евдокса, у якій свідомо відкидалися чисельні вираження для відрізків прямої і, таким чином, непорівнянні розглядалися тільки геометрично: "числами" вважалися тільки цілі чи числа раціональні дроби.

Яку мету ставив собі Евклід, коли писав свої "Початки"? Ми можемо з відомою впевненістю думати, що він хотів спільно викласти в одній праці три великих відкриття недавнього минулого: теорію відносин Евдокса, теорію ірраціональних Теєтета і теорію п'яти правильних тіл, що займали видатне місце в космології Платона. То були три типово "грецьких" досягнення.

Найбільшим математиком епохи еллінізму й усього древнього світу був Архімед (287-212), що жив у Сіракузах, де він був радником Гієрона. Він - один з деяких вчених античності, яких ми знаємо не тільки по імені: збереглися деякі зведення про його життя й особистість. Ми знаємо, що він був убитий, коли римляни взяли Сіракузи, при облозі яких технічне мистецтво Архімеда було використано захисниками міста. Подібна схильність до практичних застосувань представляється нам дуже незвичайною, якщо врахувати, з яким презирством до цього відносилися сучасники Архімеда зі школи Платона. Однак пояснення нам дає багато разів цитоване повідомлення Плутарха (у життєписі Марцеяла), а саме: "Хоча ці винаходи заслужили йому репутацію надлюдської проникливості, він не дойшов до того, щоб залишити який-небудь писаний твір з таких питань, а, вважаючи низькою і невартою справою механіку і мистецтво будь-якого роду, якщо воно має на меті користь і вигоду, усі свої честолюбні домагання він засновував на власних поглядах", краса і тонкість яких не заплямовані якою-небудь домішкою звичайних життєвих нестатків".

Найбільш важливий внесок Архімеда в математику відноситься до тієї області, що тепер ми називаємо інтегральним численням: теореми про площі плоских фігур і про обсяги тел. У "Вимірі кола" він знайшов наближене вираження для окружності, користаючись уписаними й описаними правильними багатокутниками. Дійшовши в цьому наближенні до багатокутників з 96 сторонами, він знайшов (у наших позначеннях), що

Звичайно про це повідомляють, говорячи, що П приблизно дорівнює 3. У книзі Архімеда "Про сферу і циліндр" ми знаходимо вираження для поверхні сфери (у такому виді: поверхня сфери в чотири рази більше площі великого кругу) і для обсягу сфери (у такому виді: обсяг сфери дорівнює обсягу описаного циліндра).

У книзі про "Спіралі" ми знаходимо "спіраль Архімеда" і обчислення площ, а в книзі "Про коноїди і сфероїди" - обсяги деяких тіл, утворених обертанням кривих другого порядку.

Ім'я Архімеда зв'язано також з його теоремою про утрату ваги тілами, зануреними в рідину. Ця теорема знаходиться в трактаті по гідростатиці "Про тіла, що плавають,".

В усіх цих працях Архімеда разюча оригінальність думки сполучається з майстерною технікою обчислень і зі строгістю доказів. Характерні для цієї строгості вже згадана "аксіома Архімеда" і постійне використання методу вичерпування при доказі його інтеграційних результатів. Ми бачили, що фактично він знаходив ці результати більш евристичним шляхом ("зважуючи" нескінченно малі), але потім він публікував їх, дотримуючи самі тверді вимоги строгості.

Достаток обчислень в Архімеда відрізняє його від більшості творчих математиків Греції. Це додає його працям, при всіх їхній типово грецьких особливостях, східний відтінок. Такий відбиток помітний у його "Задачі про бики" - дуже складній задачі невизначеного аналізу, яку можна витлумачити як задачу, що приводить до рівняння

t2 – 4729494u2=1

типи "рівняння Пелля", що зважується в дуже великих (цілих) числах. Це лише одне з багатьох вказівок на те, що традиції Платона ніколи безроздільно не гocподарювали в математиці еллінізму, і на те ж саме вказує елліністична астрономія.

9. З третім великим математиком еллінізму, Аполлонієм з Перги (260-170), ми знову цілком у руслі геометричної традиції греків. Аполлоній, що, очевидно, вів навчання в Олександрії й у Пергамі, написав трактат з восьми книг про конічні перетини ("Про коніків"). Сім книг збереглося, три з них - тільки в арабському перекладі. Це - трактат про еліпс, параболу і гіперболу, обумовлених як перетину кругового конуса, де виклад доведений до дослідження эволют конічного перетину. Ми називаємо ці криві, випливаючи Аполлонію; ці назви виражають одне з властивостей цих кривих, зв'язане з площами і що виражається, у наших позначеннях, рівняннями

у2 = рх, у2 = рх ±

х2

"(запис однорідна, в Аполлонія р и d - відрізки; знак " + " дає гіперболу, знак "-" дає еліпс). Парабола тут значить "додаток", еліпс - "додаток з недоліком", гіпербола - "додаток з надлишком". Аполлоній не розташовував нашим координатним методом, тому що він не мав у своєму розпорядженні алгебраїчні позначення (ймовірно, він свідомо, під впливом школи Євдокса, відкидав їх). Однак його результати можна відразу записати мовою координат, включаючи властивість, що збігається з тим, що виражається їхнім рівнянням у декартових координатах. Те ж саме можна сказати про інші книги Аполлонія, що збереглися частково. Вони містять "алгебраїчну" геометрію геометричною мовою і тому в однорідному записі. Тут ми знаходимо задачу Аполлонія: побудувати окружність, дотичну до трьох заданих окружностей; окружності можна замінити прямими або точками. В Аполлонія ми вперше зустрічаємо в явному виді вимогу, щоб геометричні побудови виконувалися тільки за допомогою циркуля і лінійки. Отже, це не було настільки загальною "грецькою" вимогою, як інколи стверджують.

Математику протягом усієї її історії аж до сучасності не можна відривати від астрономії. Запити іригації і сільського господарства в цілому, а у відомій мірі і мореплавання забезпечили астрономії перше місце в науці Сходу й елліністичній науці. Хід розвитку астрономії в чималій мірі визначав хід розвитку математики. Астрономія багато в чому визначала зміст обчислювальної математики, а часом і математичних понять, так само прогрес астрономії залежав від того, наскільки сильна була доступна математична література. Будова сонячної системи така, що порівняно простими математичними методами можна одержати прекрасні результати, але в той же час воно досить складно для того, щоб стимулювати удосконалювання цих методів і самих астрономічних теорій. На Сході в епоху, що безпосередньо передує елліністичної, домоглися значного просування в обчислювальній астрономії, особливо в Месопотамії в пізньоассирійську і перську епоху. Тут систематично проводилися протягом тривалого часу спостереження і дали можливість відмінно розібратися в багатьох ефемеридах. Рух Місяця для математика було однієї із самих важких і захоплюючих астрономічних проблем як у стародавності, так і у вісімнадцятому столітті, і вавілонські ("халдейські") астрономи багато сил поклали на його дослідження. Встановлення зв'язків між грецькою і вавілонською наукою в епоху Селевкидів багато чого дало й в обчислювальній, і в теоретичній астрономії, і там, де наука Вавілона продовжувала випливати з древньої календарної традиції, грецька наука змогла домогтися деяких своїх найбільш чудових досягнень.

Самим давнім з відомих нам грецьких досягнень у теоретичній астрономії є планетна теорія Евдокса, уже знайомого нам як натхненника Евкліда. Це була спроба пояснити рух планет (навколо Землі) за допомогою чотирьох обертових концентричних сфер, кожна з який мала особливу вісь обертання з кінцями, закріпленими в сфері, що охоплює. Це було щось нове і типово грецьке, більше пояснення, чим реєстрація небесних явищ. При усій своїй зовнішній примітивності теорія Евдокса вкладала в собі основну ідею всіх планетних теорій аж до сімнадцятого сторіччя - пояснення неправильностей видимого руху Місяця і планет накладенням кругових рухів. Ця ідея лежить в основі й обчислювальній частині сучасної динамічної теорії, оскільки ми вводимо ряди Фур'є.