n | x | y=x-1 | z=x+1 | xn | yn | xn+ yn | zn | D% |
2 | 4 | 3 | 5 | 16 | 9 | 25 | 25 | - |
3 | 6,055 | 5,055 | 7,055 | 221 | 129 | 350 | 350 | - |
4 | 8,125 | 7,125 | 9,125 | 4350 | 2540 | 6890 | 6890 | - |
5 | 10,200 | 9,200 | 11,200 | 107000 | 66000 | 173000 | 175000 | 1,25 |
На основании изложенного можно сделать следующие предварительные выводы:
1. Согласование левых и правых частей уравнений (1) и (2) невозможно без учета добавки P(a,n)/xn-1.
2. Если уравнение yn+ xn=znс учетом добавки P(a,n) выразить в числовых отрезках и спроектировать на плоскость (х,у), то на ней при n>2 образуется остроугольный треугольник, все стороны которого при a=b=1 выражены нецелыми числами: х=2n+P(1,n)/хn-1; у=2n-1+ P(1,n)/хn-1; z=2n+1+ P(1,n)/хn-1, что находит подтверждение при следующем рассмотрении добавки P(1,n)/хn-1 .
Для выяснения этого вопроса представим ее после сокращений в следующем виде
P(1,n)/хn-1=2cn3/x2 + 2cn5 /x4 +2cn7 /x6... ( 1+1)/xn-1
Первый член разложения, из-за малости x2 имеет наибольшую величину и может выражаться целым числом со значащими цифрами после запятой (для n=15 – 1,1…; для n=25 – 1,8…; и т.п.). Последний член имеет наименьшую величину из-за большого знаменателяxn-1(для n=3 – 2/62 ; для n=15– порядка 2/3014 ; для n=25– 2/5024 и т.п.)
Первая половина разложения по сумме значительно превышает вторую за счет резкого увеличения числителей. Все члены разложения второй половины меньше 1 за счет уменьшения числителей и дальнейшего возрастания знаменателей, и интенсовно уменьшаются по мере удаления от центра. В результате общая сумма разложения для n>14 (для n<=14 добавка <1) всегда будет определяться целыми числами со значащими цифрами после запятой, т.е. все эти числа будут нецелыми, что свидетельствует о достоверности и доказуемости теоремы Ферма.
3. Известно, что уравнение второй степениy2 + x2 =z2решается в целых числах, а её проекцией на плоскость (х,у) является прямоугольный треугольник. Можно предположить, что для более высоких степеней n найдется прямоугольная проекция, при которой решение уравнения Ферма будет происходить при целых x,y,z. Такое предположение оправдано для степени n=3 в объемных прямоугольных координатах x,y,z, в которых для уравнения (x-2a)3 +(x-a)3 +x3 =(x+b)3 , существуют целые числа 3,4,5,6 и им кратные, которые удовлетворяют условию 33 +43 +53 =63.
Физически эти числа выражают сумму кубов в целых числах, по аналогии с n=2, где сумма квадратов означает сумму площадей. По сути мы получили новый вариант теоремы Ферма.
4. Искажения проекций (треугольников) по мере возрастания n обусловлены отражением на плоскости (х,у) несвойственных ей структур более высокого порядка. Отсюда можно заключить, что решения теоремы Ферма в целых числах связаны с наличием прямоугольных проекций, а при нецелых решениях- с искаженными проекциями в виде остроугольных треугольников.
сosC= (a2+ b2 -c2)/2ab. Подставим вместо сторон а, bи с их аналоги из треугольных проекций при а = b =1:
а → x; b → y=x-1; c → z=x+1, гдеx=2n+P(1,n)/xn-1
После выполнения операций преобразования получим:
cosCn= 0,5-1,5/ xn-1 (7)
n | 2 | 3 | 4 | 5 | 10 | ∞ |
x-1 | 3 | 5.054 | 7.125 | 9.200 | 19.0.. | ∞ |
cosC | 0 | 0.202 | 0.289 | 0.337 | 0.421 | 0.5 |
Co | 90 | 78 | 73 | 70 | 65 | 60 |
Из которых следует :
- искажение треугольников при n>2 обусловлено изменением угла С от 90о при n=2 до 60о при n→∞ при этом треугольники превращаются из прямоугольных в остроугольные и в пределе – в равносторонние.
- В остроугольных треугольниках нет целых решений уравнений Ферма т.к. их стороны сформированы нецелыми числами.
- Решение теоремы Ферма в целых числах присуще только прямоугольным проекциям на плоскость (х,у) числовых отрезков уравнений y2 + x2 =z2
5. Второй сектор квадранта является аналогом первого- зеркальным отражением первого при y>x со всеми вытекающими из этого результатами.
6. В процессе проведения анализа по доказательству теоремы Ферма в общем виде получены 4 компактных метода доказательства теоремы при целых x, y, когда требуется показать , что при n>2 число z является нецелым.
Первый метод доказательства следует из рассмотрения остроугольного треугольника, для которого Z02= x2 +y2 –2xycosc. Требуется доказать, что Z0является нецелым числом. В нем известны x и y – целые числа, а coscопределен с учетом ограничений a=b=1. Он изменяется в пределах 0< cosc < 0,5 (см. ф-лу (7) и табл. на стр.3) и является функцией нецелого, иррационального числа х. Значит и соsc является также нецелым числом со множеством значащих цифр после запятой. Благодаря этому нецелым становится выражение 2xycosc, что в свою очередь делает нецелым Z02 и извлеченный из него квадратный корень Z0.