2c2-g=0 и g=2c2,
с другой стороны g = 6b1, значит
c2=3b1.
Имея условия f = 2a1, g = 6b1, c2=3b1, из соотношений (1.111) – (1.113), (1.121), (1.123) и (1.131) найдем выражения коэффициентов кривой (1.4) через коэффициенты системы(1.1) в следующем виде:
a2 = , b2 =
,g2 =
, b3 = ,g3 =
,(1.15)d =
.Равенства (1.122) и (1.132) с учетом полученных выражений (1.15), дадут два условия, связывающие коэффициенты a, b, c, d, a1, b1, b2:
(2ab1-ba1)[3(32a1b1b2-15a12b1-16b1b22) a+(8a1b22-18a12b2+9a13) b+
24(a1b12-b12b2) c+(16a1b1b2-15a12b1) d]=0, (1.16)
(2ab1-ba1)[12(7a1b1b2-3a12b1-4b1b22) a2+6(3a1b12-4b12b2) ac+(3a12b1-
-4a1b1b2) bc+2(4a12b2-3a13)bd –8a1b12cd+4a12b1d2]=0. (1.17)
Итак, установлена следующая теорема:
Теорема 1.1Система (1.1) имеет частный интеграл вида (1.4), коэффициенты которого выражаются формулами (1.15), при условии, что коэффициенты системы связаны соотношениями (1.16), (1.17) и c1=a2= 0, c2= 3b1.
1.2 Построение квадратичной двумерной стационарной системы с частным интегралом в виде кривой первого порядка
Рассмотрим система (1.1), которая в качестве частного интеграла (1.2) имеет кривую первого порядка:
mx+ny+p=0. (1.18)
В системе (1.1), согласно предыдущего параграфа
a2=c1=0, c2=3b1. (1.19)
Для интеграла (1.18) системы (1.1), с учетом (1.19), имеет место соотношение (1.3), где L(x,y)= ax+by+g, a, b, g – постоянные:
m(ax+by+a1x2+2b1xy)+n(cx+dy+2b2xy+3b1y2)=
=(mx+ny+p)( ax+by+g). (1.20)
Приравнивая в (1.20) коэффициенты при одинаковых степенях xmyn, получим следующую связь между коэффициентами кривой (1.18) и системы (1.1):
(a1-a)m= 0, (1.211)
(2b1-b)m+(2b2-a)n=0, (1.212)
(3b1-b)n=0; (1.213)
(a-g)m+cn-pa=0, (1.221)
bm+(d-g)n-bp= 0, (1.222)
pg= 0. (1.223)
Предположим, что кривая не проходит через начало координат, то есть p¹0. Тогда из условия (1.223) получаем, что g=0.
Условия (1.221), (1.222) запишутся в виде:
am+cn-pa=0, (1.231)
bm+dn-bp= 0. (1.232)
Из условий (1.211) и (1.213) имеем:
(a1-a)m= 0,
(3b1-b)n=0.
Пусть m¹0, тогда a1-a=0 и
a=a1, (1.24)
а при n¹0, получаем, что 3b1-b=0 и
b=3b1. (1.25)
Учитывая (1.24) и (1.25) из условия (1.212) находим выражение коэффициента m:
m=
, (1.26)а соотношение (1.231) даст значение коэффициента p:
p=
. (1.27)Из равенства (1.232), с учетом полученных выражений (1.26) и (1.27), находим условие на коэффициенты системы (1.1):
[3(a1b1-2b1b2) a+(2a1b2-a12) b-3b12c+a1b1d] n=0. (1.28)
Итак, установлена следующая теорема:
Теорема 1.2Система (1.1) имеет частный интеграл (1.18), коэффициенты которого выражаются формулами (1.26),(1.27), при условии, что коэффициенты системы связаны соотношением (1.28) и c1=a2= 0, c2= 3b1.
В разделах 1, 2 мы получили, что система (1.1) будет иметь два частных интеграла в виде кривых третьего и первого порядков при условии, что коэффициенты системы связаны соотношениями:
(2ab1-ba1)[3(32a1b1b2-15a12b1-16b1b22) a+(8a1b22-18a12b2+9a13) b+
24(a1b12-b12b2) c+(16a1b1b2-15a12b1) d]=0,
(2ab1-ba1)[12(7a1b1b2-3a12b1-4b1b22) a2+6(3a1b12-4b12b2) ac+(3a12b1-
-4a1b1b2) bc+2(4a12b2-3a13)bd –8a1b12cd+4a12b1d2]=0,
[3(a1b1-2b1b2) a+(2a1b2-a12) b-3b12c+a1b1d] n=0.
Причем b1¹0, a1¹0, 2b1a-ba1¹0.
Рассмотрим частный случай, т.е. будем предполагать, что коэффициенты
a1=
, b1=1, b2=0.Следовательно, наши соотношения запишутся в виде:
a- b-3c+ d=0, (1.30)-
a+ b+6c- d=0, (1.31)-
a2+ d2+ ac+ bc- bd-2cd=0. (1.32)Выразим из условия (1.30) коэффициент c
c=
a- b+ d, (1.33)подставим (1.33) в равенство (1.31), найдем коэффициент d
d=
(-21a+ b). (1.34)Из условия (1.32), учитывая (1.33) и (1.34) находим
b=
a.Получаем, что коэффициенты системы (1.1) определяются по следующим формулам:
b=
a,c=-
a, (1.35)d=-
a,a1=
, b1=1, a2=0, c1=0, b2=0, c2=3b1=3.Равенства (1.15), (1.26) и (1.27), при условии, что имеют место формулы (1.35), дадут следующие выражения для коэффициентов интегралов (1.4) и (1.18):
a2=12a, b2= -
a,g2=a, b3=
a2,g3= -
a2,d= a3, (1.36)m= -
n, p= - an.Теорема 1.3Система (1.1) имеет два частных интеграла вида (1.4) и (1.18) с коэффициентами, определенными формулами (1.36), при условии, что коэффициенты системы (1.1) выражаются через параметры по формулам (1.35).
2 ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ТРАЕКТОРИЙ СИСТЕМЫ НА ПЛОСКОСТИ
2.1 Исследование системы (1.1) с коэффициентами, заданными формулами (1.35) в конечной плоскости
Пусть мы имеем систему (1.1), коэффициенты которой определяются согласно формулам (1.35),т.е. систему:
(2.1)Интегральные кривые (1.4),(1.18), согласно формулам (1.36), имеют вид:
x3+12ax2-
axy+ay2+ a2x- a2y+ a3=0, (2.2)-
nx+ny- an=0. (2.3)Найдем состояния равновесия системы (2.1). Приравняв правые части системы к нулю и исключив переменную x, получим следующее уравнение для определения ординат состояний равновесия: