Смекни!
smekni.com

Классификации гиперболических дифференциальных уравнений в частных производных (стр. 5 из 5)

Дифференциальные уравнения имеют огромное прикладное значение, являясь мощным орудием исследования многих задач естествознания и техники: они широко используются в механике, астрономии, физике, во многих задачах химии, биологии. Это объясняется тем, что весьма часто законы, которым подчиняются те или иные процессы, записываются в форме дифференциальных уравнений, а сами эти уравнения, таким образом, являются средством для количественного выражения этих законов.

В заключение хотелось бы отметить особую роль дифференциальных уравнений при решении многих задач математики, физики и техники, так как часто не всегда удается установить функциональную зависимость между искомыми и данными переменными величинами, но зато удается вывести дифференциальное уравнение, позволяющее точно предсказать протекание определенного процесса при определенных условиях.


Список литературы

1. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике: Учеб. пособие. М.: Наука, 1980. 686 с.

2. БицадзеА.В. Уравнения математической физики: Учеб. М.:Наука,1982. 336 с.

3. Бицадзе А.В.,КалиниченкоД.Ф. Сборник задач по уравнениям математической физики: Учеб.пособие. М.: Наука, 1977. 222 с.

4. Владимиров В. С., Уравнения математической физики, М., 1967.

5. Карслоу Г. С., Теория теплопроводности, пер. с англ., М.: Приор, 2002.

6. Канторович Л. В. и Крылов В. И., Приближённые методы высшего анализа, 5 изд., Л. — М., 1962.

7. Михайлов В.П. Дифференциальные уравнения в частных производных: Учеб.пособие. М.: Наука, 1983. 424 с.

8. Петровский И. Г., Лекции по теории интегральных уравнений, 3 изд., М., 1999.

9. Смирнов В.И. Курс высшей математики: Учеб.: В 4 т. Т.2. М.: Наука, 1981. 655 с. Т.4. М.: Наука, 1981. Ч. 2.

10. Тихонов А.Н., Самарский А.А. Уравнения математической физики: Учеб.Пособие. М.: Наука, 1977. 735 с.


[1] Тихонов А. Н. и Самарский А. А., Уравнения математической физики, 3 изд., М., 1977. – с. 155.

[2] Карслоу Г. С., Теория теплопроводности, пер. с англ., М.: Приор, 2002. – с. 98.

[3] Владимиров В. С., Уравнения математической физики, М., 1967. – с. 155.

[4] Петровский И. Г., Лекции по теории интегральных уравнений, 3 изд., М., 1999– с. 78.

[5] Канторович Л. В. и Крылов В. И., Приближённые методы высшего анализа, 5 изд., Л. — М., 1962. – с. 166.