МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ГИМНАЗИЯ № 6
РЕФЕРАТ
на тему «Классическое определение вероятности».
Выполнила ученица 8 «Б» класса
Климантова Александра.
Учитель по математике: Виденькина В. А.
Воронеж, 2008
Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек—от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат—исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:
1) событие А—выпадает цифра 1, 2, 3, 4, 5 или 6;
2) событие В—выпадает цифра 7, 8 или 9;
3) событие С—выпадает цифра 1.
Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием.
Событие В, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием.
А событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием.
Думая про наступление достоверного события, мы слово «вероятно» использовать, скорее всего, не будем. Например, если сегодня среда, то завтра четверг, это—достоверное событие. Мы в среду не станем говорить: «Вероятно, завтра четверг», мы скажем коротко и ясно: «Завтра четверг». Правда, если мы склонны к красивым фразам, то можем сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы—невозможное событие. Оценивая это событие в среду, мы можем сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если мы склонны к красивым фразам, то можем сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие—это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие—это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью.
Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.
Первые шаги в этом направлении мы уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная, а вероятность наступления невозможного события—как нулевая. Учитывая, что 100 % равно 1, люди договорились о следующем:
1) вероятность достоверного события считается равной 1;
2) вероятность невозможного события считается равной 0.
А как подсчитать вероятность случайного события? Ведь оно произошло случайно, значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется–теория вероятностей.
Математика имеет дело с моделью некоторого явления окружающей нас действительности. Из всех моделей, используемых в теории вероятностей, мы ограничимся самой простой.
Классическая вероятностная схема
Для нахождения вероятности события А при проведении некоторого опыта следует:
1) найти число N всех возможных исходов данного опыта;
2) принять предположение о равновероятности (равновозможности) всех этих исходов;
3) найти количество N(А) тех исходов опыта, в которых наступает событие А;
4) найти частное ; оно и будет равно вероятности события А.
Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски–probabilite, по-английски–probability.В обозначении используется первая буква слова.
Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы
Р(А)= .
Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.
Классическое определение вероятности
Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.
Пример 1. Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.
Решение. Всего имеется N=6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.
а) Ровно в одном из исходов произойдет интересующее нас событие А–выпадение числа 4. Значит, N(A)=1 и
P(A)= = .
б) Решение и ответ такие же, как и в предыдущем пункте.
в) Интересующее нас событие В произойдёт ровно в трёх случаях, когда выпадает число очков 2, 4 или 6. Значит,
N(B)=3 и P(B)= = .
г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит,
N(C)=2 и Р(С)= .
д) Из шести возможных выпавших чисел четыре (1, 2, 4 и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой и равновероятных между собой исходах опыта. Поэтому в ответе получается
.Ответ: а)
; б) ; в) ; г) ; д) .Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.
Замечание 1. Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0, 5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0, 5». Есть в этом рассуждении ошибка? На первый взгляд–нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N=2. Правда и то, что N(A)=1 и уж, разумеется, верно, что
=0, 5, т. е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.Замечание 2. Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна
, это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что скорее всего может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100.