Так как
--- наследственная формация, то .Так как
--- насыщенная формация, то . Нетрудно показать, что имеет единственную минимальную нормальную подгруппу и . Согласно условию, либо группа простого порядка, либо группа Шмидта с нормальной -силовской подгруппой.Пусть
. Так как , то . Отсюда следует, что . Противоречие.Пусть
--- группа Шмидта и , где . Очевидно, что . Тогда из следует, что . А это значит, что . Так как , то . Но тогда . Так как --- полный экран, то . Так как --- внутренний экран, то . Получили противоречие.Покажем, что из 2) следует 1).
Пусть
. Согласно условию, --- разрешимая группа. Пусть . Очевидно, что имеет единственную минимальную нормальную подгруппу , причем --- -группа и . Согласно теореме 2.2.5, , где , --- полный локальный экран формации . Согласно лемме 2.2.20, . А это значит, что , где . Отсюда нетрудно заметить, что --- группа Шмидта. Согласно лемме 2.2.21, --- либо группа Шмидта с нормальной -силовской подгруппой, либо группа простого порядка. Теорема доказана.1.5 Теорема [14-A, 21-A]. Пусть
--- наследственная насыщенная -формация Шеметкова. Тогда содержит любую -разрешимую группу , где и --- -подгруппы и индексы , не делятся на .Доказательство. Доказательство проведем от противного. Тогда нетрудно доказать, что
имеет единственную минимальную нормальную подгруппу , причем и . Так как --- -разрешимая группа, то либо --- -группа, либо -группа. Если --- -группа, то из того, что следует, что . Противоречие.Пусть
--- -группа. Согласно условию, и . Так как и , то . Отсюда следует, что . Аналогичным образом получаем, что . Отсюда и группа . А это значит, что . Получили противоречие. Теорема доказана.В работе [33] было доказано, что любая наследственная насыщенная формация Шеметкова
замкнута относительно произведения -субнормальных -подгрупп. Для наследственных насыщенных -формаций Шеметкова справедлива следующая теорема.1.6 Теорема [14-A, 21-A]. Пусть
--- наследственная насыщенная -формация Шеметкова. Тогда содержит любую группу , где и --- -подгруппы, индексы , не делятся на и либо , либо -субнормальны в .