2.3 Лемма [14-A, 21-A]. Пусть
--- наследственная насыщенная -формация Шеметкова. Формация содержит любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на , только в том случае, когда --- формация -замкнутых групп.Доказательство. Пусть
--- -формация Шеметкова. Согласно теореме 5.2.2, она имеет следующее строение:где
. Если , то --- формация -замкнутых групп. Так как индексы , не делятся на , то и содержат силовскую -подгруппу группы . По условию, и -замкнуты. Отсюда следует, что -замкнута. Пусть множество содержит простое число . Покажем, что в этом случае утверждение леммы неверно. Пусть --- группа порядка . Пусть --- простое число, отличное от и . Так как , то существует точный неприводимый -модуль , где --- поле из элементов. Пусть . Так как и имеет единственную минимальную нормальную подгруппу, то согласно лемме 2.2.18, существует точный неприводимый -модуль , где --- поле из элементов. Пусть . Так как , то, как и выше, существует точный неприводимый -модуль , где --- поле из элементов. Пусть .Рассмотрим следующие две подгруппы:
и . Ясно, что . Подгруппы и -замкнуты, причем индексы , не делятся на . Если бы группа была бы -замкнута, то тогда была бы нормальной подгруппой в группе , что невозможно. Итак, утверждение леммы верно только тогда, когда . Лемма доказана.2.4 Лемма [14-A, 21-A]. Пусть
--- -разрешимая группа, , где , , индексы , не делятся на . Тогда .Доказательство. Доказательство проведем индукцией по порядку
. Пусть --- минимальная нормальная подгруппа . Так как --- -разрешимая группа, то либо -группа, либо -группа. Если --- -группа, то . Согласно индукции, . Получили противоречие.