Смекни!
smekni.com

Коллизии в рассуждениях (стр. 2 из 3)

Пример. Пусть имеется некоторое, возможно, бесконечное множество положительных целых чисел, в котором соблюдаются следующие соотношения:

N2Í (N3Ç

) (все четные числа делятся на 3 и не делятся на 5);

N3Í

(все числа, кратные 3, не делятся на 7);

Í N7 (все числа не делящиеся на 5, кратны 7).

Спрашивается, имеются ли в этом множестве четные числа?

Чтобы ответить на вопрос задачи, выполним уже знакомые нам построения. Соотношения включения обозначим, используя стрелки (например, вместо N2Í (N3 Ç

) запишем N2® (N3,
)), и построим граф исходных посылок (рисунок 5), а затем для каждого элементарного суждения построим его контрапозицию (рисунок 6, новые следствия показаны пунктирными дугами).

Рис.5 Рис.6

Выберем минимальный литерал (т.е. тот, в который не входит ни одна дуга). Им оказался литерал N2 (четные числа), т.е. тот, который нам и нужен для ответа на вопрос задачи. Построим из этого литерала возможные пути:

1-й путь: N2® N3 ®

® N5 ®
;

2-й путь: N2®

® N7 ®
®
.

В обоих случаях получена коллизия парадокса, из чего следует, что при данных условиях задачи четных чисел в этом множестве не должно быть.

Распознавать коллизию парадокса в E-структурах непосредственно по схеме далеко не всегда удобно, особенно когда в структуре много литералов. Если использовать верхние конусы, то можно сформулировать необходимое и достаточное условие существования этой коллизии. Для этого выполняем следующие действия:

выбрать верхние конусы всех минимальных элементов структуры (верхние конусы минимальных элементов называются максимальными верхними конусами);

в каждом из выбранных конусов проверить наличие или отсутствие пар альтернативных литералов (например, A и

).

использовать следующий критерий распознавания коллизии парадокса: если хотя бы в одном из максимальных верхних конусов встречается пара альтернативных литералов, то в структуре имеется коллизия парадокса, в противном случае коллизия парадокса отсутствует.

Например, в E-структуре из примера существует только один минимальный элемент, следовательно, имеется только один максимальный верхний конус

(N2, { N2, N3,

, N5,
,
, N7,
}),

в котором содержится 4 пары альтернативных литералов. Это говорит о том, что в структуре имеется коллизия парадокса.

Перейдем к рассмотрению другой коллизии - коллизии цикла. Рассмотрим сначала простой цикл между двумя терминами: A®B®A. Если сопоставить этот цикл с отношением включения между множествами, то окажется, что в данном случае этот цикл означает, что справедливы два отношения включения AÍB и BÍA. А это в свою очередь означает, что наши множества A и B равны друг другу, и соответственно термины, которые обозначают эти множества, имеют одно и то же содержание. Рассмотрим следующий пример.

Пример. Пусть заданы три посылки:

1) Все, что существует, подтверждается экспериментом.

2) Все неизвестное не подтверждается экспериментом.

3) Все известное существует.

Попробуем принять эти три посылки как аксиомы и построим для них соответствующую E-структуру. Обозначим: E - все, что существует, C - все, что подтверждается экспериментом, K - все, что известно. Соответственно

обозначает то, что не существует,
- то, что не подтверждается экспериментом,
- то, что неизвестно. Теперь представим эти посылки в виде формальных суждений:

E®C;

®
;

K®E.

Если теперь построить граф этого рассуждения и применить к трем посылкам правило контрапозиции, то на рисунке четко обозначатся два цикла: E®C®K®E и

®
®
®
.

Из законов алгебры множеств следует (строгое доказательство этого утверждения мы опустим), что для любой последовательности включений множеств, образующих цикл типа A®B®C® … ®A, справедливо равенство всех множеств, содержащихся в цикле. В нашем примере это означает, что все существующие, подтвержденные в эксперименте и известные явления полностью совпадают друг с другом. Если взять другой полученный в этой задаче цикл, то окажется, что все неизвестные, несуществующие и не подтвержденные в эксперименте явления также эквивалентны друг другу.

В традиционной логике такая ситуация определяется как логическая ошибка "круг в обосновании" (или "порочный круг"). Как тут не вспомнить крылатую фразу из рассказа Чехова: "Этого не может быть, потому что этого не может быть никогда"! Или менее известное в России шуточное высказывание Л. Кэрролла: "Как хорошо, что я не люблю спаржу, - сказала маленькая девочка своему заботливому другу, - ведь если бы я ее любила, то мне пришлось бы ее есть, а я ее терпеть не могу". Все это примеры "порочного круга".

В то же время приведенный пример трудно отнести к разряду удачных шуток. Скорее всего, это образец бессодержательной демагогии.

Однако коллизия цикла в E-структуре, так же как и коллизия парадокса, не всегда означает ошибку в рассуждении. Здесь многое зависит от конкретных примеров. Рассмотрим пример, в котором коллизия цикла позволяет уточнить свойства объектов, содержащихся в рассуждении.

Пусть известно, что система содержит какие-то объекты с независимыми свойствами E, C и K, и для каждого из этих свойств существует его альтернатива:

,
,
. Например, нам известно, что в каком-то закрытом ящике содержатся предметы с различным сочетанием следующих свойств: они могут быть деревянными (E), либо пластмассовыми (
); иметь форму шара (C), либо куба (
); быть красного (K), либо зеленого (
) цвета. Нам не известно число предметов (их может быть сколь угодно много), но известны некоторые соотношения, которые можно выразить в форме суждений. Примером таких соотношений могут быть следующие:

Все деревянные предметы имеют форму куба (E®

);

Все предметы зеленого цвета - шары (

®C);

Все предметы красного цвета - деревянные (K®E).

Требуется определить, какие сочетания свойств невозможны для предметов, находящихся в этом ящике. Нарисуем схему для исходных суждений (рис.7) и добавим к ним контрапозиции исходных суждений (рис.8).

Рис.7 Рис.8

На рисунке 8 отчетливо видны два цикла: E®

®K®E и
®
®C®
. Отсюда понятно, что свойства E,
, K присущи одному и тому же множеству и не присущи по отдельности другим множествам нашей системы. То же самое можно сказать и относительно свойств
,
, C. Из этого следует, что в ящике могут находиться только деревянные красные кубы и пластмассовые зеленые шары, а все остальные сочетания свойств исключаются. Например, в ящике не должно быть деревянных предметов зеленого цвета.