Анализ логических ошибок с помощью E-структур основан на том, что в рассуждении допускаются все возможные (порой составленные явно не по правилам Аристотелевой силлогистики) сочетания суждений. При этом из исходных посылок получаются все возможные следствия. Среди них могут оказаться и такие, которые говорят о том, что в посылках содержатся какие-то неприятности. Эти неприятности мы будем называть коллизиями.
Коллизиями E-структуры называются следующие ситуации, появляющиеся при построении CT-замыкания:
коллизия парадокса: появление в CT-замыкании по крайней мере одного из суждений типа X®
коллизия цикла: появление в CT-замыкании по крайней мере одного цикла.
Вспомним, что циклом в графе называется путь, который начинается и заканчивается одной и той же вершиной. Но вначале мы рассмотрим коллизию парадокса.
Коллизия парадокса. Что означает отношение X®
Простейшим случаем коллизии парадокса является соединение в одной E‑структуре двух контрарных суждений, например, A®B и A®
Рис.1 Рис.2
Другой простой случай коллизии парадокса для пары разных терминов и их отрицаний мы получим, если соединим в одной E-структуре два суждения A®B и
Попробуем смоделировать коллизию парадокса в примере, добавив в число посылок суждение S®
Но коллизия парадокса не всегда означает катастрофу. Иногда ее появление позволяет распознать в рассуждении явно лишние термины. В качестве примера такого рассуждения возьмем сорит Л. Кэрролла о парламенте, который был приведен в конце предыдущего раздела в качестве самостоятельного упражнения. Те, кто справился с этой задачей, наверное, смогли убедиться в том, что в этом сорите отсутствуют коллизии, но некоторые следствия кажутся несколько странными для членов парламента (например, "Все, кто не в здравом рассудке, являются членами палаты лордов" или "Все, кто принимает участие в скачках на мулах, являются членами палаты общин").
Предположим, что некто решил с помощью хитроумных тестов проверить умственные способности всех членов палаты лордов и в результате исследований получил следующий результат: "Все члены палаты лордов находятся в здравом рассудке". Этот результат по форме является суждением (кстати, многие факты также можно выразить в форме суждений), и мы можем ввести его в качестве дополнительной посылки в нашу систему.
Нетрудно убедиться, что в результате такого нововведения появляется коллизия парадокса: "Все, кто не в здравом рассудке, находятся в здравом рассудке". Отсюда ясно, что тех, кто не в здравом рассудке в нашем универсуме (т.е. среди членов парламента) нет, и мы можем теперь исключить из рассмотрения термин "те, кто не в здравом рассудке" и заодно альтернативный ему термин "те, кто в здравом рассудке". Заодно вместе с этим изъятием (или элиминацией) нужно исключить все связи, которые соединяют эти термины с другими терминами нашего рассуждения.
Удаление термина из рассуждения из-за коллизии парадокса не означает, что он исчезает бесследно. Просто один из терминов (в нашем примере - это термин "те, кто в здравом рассудке") становится необходимым свойством всего универсума.
Рассмотрим еще один пример, с помощью которого можно показать явное неравенство друг другу суждения и его обращения. Если дано некоторое суждение, то обратным суждением называется суждение, в котором правая и левая части переставлены. Например, суждением, обратным суждению A®B, будет суждение B®A.
Пример. Даны посылки:
Все мои друзья хвастуны и не скандалисты;
Все, кто хвастается, не уверен в себе.
А теперь предположим, что у нас имеются две гипотезы, которые нам необходимо проверить на совместимость с исходными посылками:
Г1: Все уверенные в себе не скандалисты;
Г2: Все, кто не скандалит, уверены в себе.
Ясно, что обе гипотезы содержат одни и те же термины, но каждая из них является обращением другой. Сначала запишем исходные суждения в математической форме, для чего введем следующие обозначения: D - мои друзья, H - хвастуны, S - скандалисты, Y - уверенные в себе. Тогда получим:
D® (H,
H®
Строим граф (рисунок 3), при этом надо учитывать, что суждения типа D® (H,
Рис.3 Рис.4
Надо построить две системы рассуждений, в одной из которых в состав исходных посылок добавлена гипотеза Г1, а в другой - гипотеза Г2. И тогда окажется, что гипотеза Г1 (Y®
Предложенные методы анализа рассуждений можно использовать не только для терминов, которые обозначают какие-либо конечные перечисляемые множества, но и для терминов, которые обозначают бесконечные множества с заданными свойствами. Рассмотрим бесконечные множества положительных целых чисел со свойствами делимости. Среди них имеются множества четных чисел, нечетных чисел, чисел, кратных трем, семи и т.д. Ясно, что каждое из этих множеств является потенциально бесконечным множеством. Обозначим эти множества соответственно N2 (четные числа), N3 (кратные трем), N5 (кратные пяти), N7 (кратные семи). Существуют соответственно и дополнения этих множеств, которые тоже являются потенциально бесконечными множествами: