Смекни!
smekni.com

Корни многочленов от одной переменной (стр. 4 из 6)

А сейчас вернемся к понятию кратности корня. Выясним, например, является ли число 2 корнем многочлена f (x) =x5-5x4+3x3+22x2-44x+24, и если да, найдем его кратность. Чтобы ответить на первый вопрос, проверим с помощью схемы Горнера, делится ли f (x) на х-2. имеем:

Таблица 4.

1 -5 3 22 -44 24
2 1 -3 -3 16 -12 0

Как видим, остаток при делении f (x) на х-2 равен 0, т.е. делится на х-2. Значит, 2 - корень этого многочлена. Кроме того, мы получили, что f (x) = (x-2) (x4-3x3-3x2+16x-12). Теперь выясним, является лиf (x) на (х-2) 2. Это зависит, как мы только что доказали, от делимости многочлена g (x) =x4-3x3-3x2+16x-12 на х-2. Снова воспользуемся схемой Горнера:

Таблица 5.

1 -3 -3 16 -12
2 1 -1 -5 6 0

Получили, что g (x) делится на х-2 и g (x) = (x-2) (x3-x2-5x+6). Тогда f (x) = (x-2) 2 (x3-x2-5x+6).

Итак, f (x) делится на (х-2) 2, теперь нужно выяснить, делится ли f (x) на (x-2) 3.

Для этого проверим, делится ли h (x) =x3-x2-5x+6 на х-2:

Таблица 6.

1 -1 -5 6
2 1 1 -3 0

Получим, что h (x) делится на х-2, а значит, f (x) делится на (х-2) 3, и f (x) = (x-2) 3 (x2+x-3).

Далее аналогично проверяем, делится лиf (x) на (х-2) 4, т.е. делится ли s (x) =x2+x-3 на х-2:

Таблица 7.

1 1 -3
2 1 3 3

Находим, что остаток при делении s (x) на х-2 равен 3, т.е. s (x) не делится на х-2. Значит, f (x) не делится на (х-2) 4.

Таким образом, f (x) делится на (х-2) 3, но не делится на (х-2) 4. Следовательно, число 2 является корнем кратности 3 многочлена f (x).

Обычно проверку корня на кратность выполняют в одной таблице. Для данного примера эта таблица имеет следующий вид:

Таблица 8.

1 -5 3 22 -44 -24
2 1 -3 -3 16 -12 0
2 1 -1 -5 6 0
2 1 1 -3 0
2 1 3 3

Другими словами, по схеме Горнера деление многочлена f (x) на х-2, во второй строке мы получим коэффициенты многочлена g (x). Затем эту вторую строку считаем первой строкой новой системы Горнера и выполняем деление g (x) на х-2 и т.д. продолжаем вычисления до тех нор, пока не получим остаток, отличный от нуля. В этом случае кратность корня равна числу полученных нулевых остатков. В строке, содержащей последний ненулевой остаток, находится и коэффициенты частного при делении f (x) на (x-2) 3.

Теперь, используя только что предложенную схему проверки корня на кратность, решим следующую задачу. При каких a и b многочлен f (x) =x4+2x3+ax2+ (a+b) x+2 имеет число - 2 корнем кратности 2?

Так как кратность корня - 2 должна быть равна 2, то, выполняя деление на х+2 по предложенной схеме, мы должны два раза получить остаток 0, а в третий раз - остаток, отличный от нуля. Имеем:

Таблица 9.

1 2 a a+b 2
-2 1 0 a -a+b 2a-2b+2
-2 1 -2 а+4 -3a+b-8
-2 1 -4 а+12

Таким образом, число - 2 является корнем кратности 2 исходного многочлена тогда и только тогда, когда

Отсюда получаем: a=-7/2, b=-5/2.

Рациональные корни многочлена

Как мы уже отмечали, одной из важнейших задач в теории многочленов является задача отыскания их корней. Для решения этой задачи можно использовать метод подбора, т.е. брать наугад число и проверять, является ли оно корнем данного многочлена.

При этом можно довольно быстро "натолкнуться" на корень, а можно и никогда его не найти. Ведь проверить все числа невозможно, так как их бесконечно много.

Другое дело, если бы нам удалось сузить область поиска, например знать, что искомые корни находятся, скажем, среди тридцати указанных чисел. А для тридцати чисел можно и проверку сделать. В связи со всем сказанным выше важным и интересным представляется такое утверждение.

Если несократимая дробь l/m (l,m- целые числа) является корнем многочлена f (x) с целыми коэффициентами, то старший коэффициент этого многочлена делится на m, а свободный член - на 1.

В самом деле, если f (x) =anxn+an-1xn-1+... +a1x+a0, an≠0, где an, an-1,...,a1, a0 - целые числа, то f (l/m) =0, т.е.

аn (l/m) n+an-1 (l/m) n-1+... +a1l/m+a0=0.

Умножим обе части этого равенства на mn. Получим

anln+an-1ln-1m+... +a1lmn-1+a0mn=0.

Отсюда следует

anln=m (-an-1ln-1-... - a1lmn-2-a0mn-1).

Видим, что целое число anln делится на m. Но l/m- несократимая дробь, т.е. числа l и m взаимно просты, а тогда, как известно из теории делимости целых чисел, числа ln и m тоже взаимно просты. Итак, anln делится на m и m взаимно просты с ln, значит, an делится на m.

Доказанная тема позволяет значительно сузить область поиска рациональных корней многочлена с целыми коэффициентами. Продемонстрируем это на конкретном примере. Найдем рациональные корни многочлена f (x) =6x4+13x2-24x2-8x+8. Согласно теореме, рациональные корни этого многочлена находятся среди несократимых дробей вида l/m, где l- делитель свободного члена a0=8, а m- делитель старшего коэффициента a4=6. при этом, если дробь l/m- отрицательная, то знак "-" будем относить к числителю. Например, - (1/3) = (-1) /3. Значит, мы можем сказать, что l - делитель числа 8, а m- положительный делитель числа 6.

Так как делители числа 8 - это ±1, ±2, ±4, ±8, а положительными делителями числа 6 будут 1, 2, 3, 6, то рациональные корни рассматриваемого многочлена находятся среди чисел ±1, ±1/2, ±1/3, ±1/6, ±2, ±2/3, ±4, ±4/3, ±8, ±8/3. напомним, что мы выписали лишь несократимые дроби.

Таким образом, мы имеем двадцать чисел - "кандидатов" в корни. Осталось только проверить каждое из них и отобрать те, которые действительно являются корнями. Но опять-таки придется сделать довольно много проверок. А вот следующая теорема упрощает эту работу.

Если несократимая дробь l/m является корнем многочлена f (x) с целыми коэффициентами, то f (k) делится на l-km для любого целого числа k при условии, что l-km≠0.

Для доказательства этой теоремы разделимf (x) на x-k с остатком. Получим f (x) = (x-k) s (x) +f (k). Так как f (x) - многочлен с целыми коэффициентами, то таким является многочлен s (x), а f (k) - целое число. Пусть s (x) =bn-1+bn-2+…+b1x+b0. Тогда f (x) - f (k) = (x-k) (bn-1xn-1+bn-2xn-2+ …+b1x+b0). Положим в этом равенстве x=l/m. Учитывая, что f (l/m) =0, получаем

f (k) = ( (l/m) - k) (bn-1 (l/m) n-1+bn-2 (l/m) n-2+…+b1 (l/m) +b0).

Умножим обе части последнего равенства на mn:

mnf (k) = (l-km) (bn-1ln-1+bn-2ln-2m+…+b1lmn-2+b0mn-1).

Отсюда следует, что целое число mnf (k) делится на l-km. Но так как l и m взаимно просты, то mn и l-km тоже взаимно просты, а значит, f (k) делится на l-km. Теорема доказана.

Вернемся теперь к нашему примеру и, использовав доказанную теорему, еще больше сузим круг поисков рациональных корней. Применим указанную теорему при k=1 и k=-1, т.е. если несократимая дробь l/m является корнем многочлена f (x), то f (1) / (l-m), а f (-1) / (l+m). Легко находим, что в нашем случае f (1) =-5, а f (-1) =-15. Заметим, что заодно мы исключили из рассмотрения ±1.

Итак рациональные корни нашего многочлена следует искать среди чисел ±1/2, ±1/3, ±1/6, ±2, ±2/3, ±4, ±4/3, ±8, ±8/3.

Рассмотрим l/m=1/2. Тогда l-m=-1 и f (1) =-5 делится на это число. Далее, l+m=3 и f (1) =-15 так же делится на 3. Значит, дробь 1/2 остается в числе "кандидатов" в корни.

Пусть теперь l\m=- (1/2) = (-1) /2. В этом случае l-m=-3 и f (1) =-5 не делится на - 3. Значит, дробь - 1/2 не может быть корнем данного многочлена, и мы исключаем ее из дальнейшего рассмотрения. Выполним проверку для каждой из выписанных выше дробей, получим, что искомые корни находятся среди чисел 1/2, ±2/3, 2, - 4.

Таким образом, довольно-таки простым приемом мы значительно сузили область поиска рациональных корней рассматриваемого многочлена. Ну, а для проверки оставшихся чисел применим схему Горнера:


Таблица 10.

6 13 -24 -8 8
1/2 6 16 -16 -16 0

Видим, что 1/2 - корень многочлена f (x) и f (x) = (x-1/2) (6x3+16x2-16x-16) = (2x-1) (3x3+8x2-8x-8). Ясно, что все другие корни многочлена f (x) совпадают с корнями многочлена g (x) =3x3+8x2-8x-8, а значит, дальнейшую проверку "кандидатов" в корни можно проводить уже для этого многочлена. При этом мы несколько выиграем по времени в вычислениях, так как проверку будем выполнять для более "короткого" многочлена. Находим: