1 | -2 | 1 | -12 , 2 | |
1 | -2 | 1 | 0 , -1 | |
1 | -2 | 1 | 12 , -2 |
Четырех точечная аппроксимация второй производной
2 | -5 | 4 | -1 | 55 , -6 | |
1 | -2 | 1 | 0 | -5 , -2 | |
0 | 1 | -2 | 1 | -5 , -2 | |
-1 | 4 | -5 | 2 | 55 , -6 |
Пятиточечная аппроксимация второй производной
35 | -104 | 114 | -56 | 11 | -150 , 12 | |
11 | -20 | 6 | 4 | -1 | 15 , -3 | |
-1 | 16 | -30 | 16 | -1 | 0 , 2 | |
-1 | 4 | 6 | -20 | 11 | 15 , 3 | |
11 | -56 | 114 | -104 | 35 | 150 , -12 |
Шести точечная аппроксимация второй производной
225 | -770 | 1070 | -780 | 305 | -50 | |
50 | -75 | -20 | 70 | -30 | 5 | |
-5 | 80 | -150 | 80 | -5 | 0 | |
0 | -5 | 80 | -150 | 80 | -5 | |
5 | -30 | 70 | -20 | -75 | 50 | |
-50 | 305 | -780 | 1070 | -770 | 225 |
Семи точечная аппроксимация второй производной
812 | -3132 | 5265 | -5080 | 2970 | -972 | 137 | |
137 | -147 | -255 | 470 | -285 | 93 | -13 | |
-13 | 228 | -420 | 200 | 15 | -12 | 2 | |
2 | -27 | 270 | -490 | 270 | -27 | 2 | |
2 | -12 | 15 | 200 | -420 | 228 | -13 | |
-13 | 93 | -285 | 470 | -255 | -147 | 137 | |
137 | -972 | 2970 | -5080 | 5265 | -3132 | 812 |
Например, производная первого порядка
в точках m=0, 3, 5 для семи точечной аппроксимации будет иметь вид: , .Аналогично выписываются выражения и для вторых производных в точках 0 и 2:
Таким образом, из приведенных таблиц можно выбрать аппроксимирующие выражения для производной в данной точке, включающие значения функции в точках нужного окружения.
4. Краевые задачи для уравнений второго порядка
При математическом описании реальных физических объектов чаще всего приходится иметь дело с дифференциальными уравнениями в обыкновенных или частных производных второго порядка с начальными, краевыми или граничными условиями.
Преобразование их в конечно-разностную систему алгебраических уравнений осуществляется аналогично: для каждой точки в области (интервале) интегрирования, где не задано краевое или граничное значение искомой функции, записывается исходное уравнение, в котором все производные выражены через заранее определенное число близлежащих ординат искомой функции, принадлежащих области, и вычислены все коэффициенты и функции независимых переменных в этой точке. К полученным таким образом уравнениям добавляются соотношения или значения функции и ее производных в точках границы области. В результате будет сформирована алгебраическая система уравнений с числом уравнений и неизвестных, равном общему числу точек области интегрирования.